Skip to main content

Representations of Importance and Interaction of Fuzzy Measures, Capacities, Games and Its Extensions: A Survey

  • Chapter
Integrated Uncertainty Management and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 68))

Abstract

This paper gives a survey of the theory and results on representation of importance and interaction of fuzzy measures, capacities, games and its extensions: games on convex geometries, bi-capacities, bi-cooperative games, and multi-choice games, etc. All these games are regarded as games on products of distributive lattices or on regular set systems.

This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology-Japan, Grant-in-Aid for Scientific Research (C), 19510136, 2007-2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review 19, 317–343 (1965)

    Google Scholar 

  2. Bilbao, J.M.: Cooperative games on combinatorial structures. Kluwer Acadmic Publ., Boston (2000)

    MATH  Google Scholar 

  3. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  4. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical social sciences 17(3), 263–283 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Curiel, I.: Cooperative game theory and applications. Kluwer Acadmic Publ., Boston (1997)

    Google Scholar 

  6. Dubey, P., Neyman, A., Weber, R.J.: Value theory without efficiency. Mathematics of Operations Research 6, 122–128 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Felsenthal, D., Machover, M.: Ternary voting games. International journal of game theory 26, 335–351 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Fujimoto, K., Kojadinovic, I., Marichal, J.L.: Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices. Games and Economic Behavior 55, 72–99 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fujimoto, K., Honda, A.: A value via posets induced by graph-restricted communication situation. In: Proc. 2009 IFSA World Congress/2009 EUSFLAT Conference, Lisbon, Portugal (2009)

    Google Scholar 

  10. Grabisch, M.: Capacities and Games on Lattices: A Survey of Results. International journal of uncertainty, fuzziness, and knowledge-based systems 14(4), 371–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grabisch, M., Labreuche, C.: Bi-capacities — I: definition, Möbius transform and interaction. Fuzzy sets and systems 151, 211–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grabish, M., Marichal, J.L., Roubens, M.: Equivalent representations of set functions. Mathematics of Operations Research 25(2), 157–178 (2000)

    Article  MathSciNet  Google Scholar 

  13. Grabisch, M., Roubens, M.: An axiomatic approach to the concept of interaction among players in cooperative games. International Journal of Game Theory 28(4), 547–565 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harsanyi, J.: A simplified bargaining model for the n-person cooperative game. International Economic Review 4, 59–78 (1963)

    Article  Google Scholar 

  15. Honda, A., Fujimoto, K.: A generalization of cooperative games and its solution concept (in Japanese). Journal of Japan society for fuzzy theory and intelligent informatics 21(4), 491–499 (2009)

    Article  Google Scholar 

  16. Hsiao, C.R., Raghavan, T.E.S.: Shapley value for multi-choice cooperative game. Games and economic behavior 5, 240–256 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kojadinovic, I.: A weigh-based approach to the measurement of the interaction among criteria in the framework of aggregation by the bipolar Choquet integral. European journal of operational research 179, 498–517 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lange, F., Grabisch, M.: The interaction transform for functions on lattices. Discrete Mathematics 309, 4037–4048 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marichal, J.L.: Aggregation operators for multicriteria decision aid, Ph.D. thesis, University of Liège (1998)

    Google Scholar 

  20. Marichal, J.L., Roubens, M.: The chaining interaction index among players in cooperative games. In: Meskens, N., Roubens, M. (eds.) Advances in decision analysis. Kluwer Acad. Publ., Dordrecht (1999)

    Google Scholar 

  21. Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (iii): interaction index (in Japanese). In: 9th Fuzzy System Symposium, Sapporo, Japan, pp. 693–696 (1993)

    Google Scholar 

  22. Murofushi, T., Sugeno, M.: Fuzzy measures and fuzzy integrals. In: Grabisch, et al. (eds.) Fuzzy Measures and Integrals. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  23. Owen, G.: Multilinear extensions of games. Management Science 18, 64–79 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rota, G.C.: On the foundations of combinatorial theory I.. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  25. Roubens, M.: Interaction between criteria and definition of weights in MCDA problems. In: Proc. 44th Meeting of the European Working Group Multiple Criteria Decision Aiding (1996)

    Google Scholar 

  26. Shapley, L.: A value for n-person games. In: Contrib. Theory of Games, II, Annals of Mathematics Studies, vol. 28, pp. 307–317 (1953)

    Google Scholar 

  27. Slikker, M., Van Den Nouweland, A.: Social and economic networks in cooperative game theory. Kluwer Academic Publ., Boston (2001)

    Google Scholar 

  28. Sugeno, M.: Theory of fuzzy integrals and its applications. Doctoral Thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  29. Weber, R.J.: Probabilistic values for games. In: Roth, A.E. (ed.) The Shapley value. Essays in honor of Lloyd S. Shapley. Cambridge University Press, Cambridge (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fujimoto, K. (2010). Representations of Importance and Interaction of Fuzzy Measures, Capacities, Games and Its Extensions: A Survey. In: Huynh, VN., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11960-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11960-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11959-0

  • Online ISBN: 978-3-642-11960-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics