Skip to main content

Symmetries: A General Approach to Integrated Uncertainty Management

  • Chapter
Integrated Uncertainty Management and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 68))

  • 968 Accesses

Abstract

We propose to use symmetries as a general approach to maintaining different types of uncertainty, and we show how the symmetry approach can help, especially in economics-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berinde, V.: Iterative approximation of fixed points. Editura Efemeride, Baia Mare (2002)

    MATH  Google Scholar 

  2. Cheu, R., Kreinovich, V., et al.: Strategies for Improving Travel Time Reliability, Texas Department of Transportation, Research Report 0-5453-R2 (2007)

    Google Scholar 

  3. Cheu, R., Kreinovich, V., Modave, F., Xiang, G., Magoc, T.: How to estimate, take into account, and improve travel time reliability in transportation networks. In: Muhanna, R.L., Mullen, R.L. (eds.) Proc. Int’l Workshop on Reliable Engineering Computing REC 2008, Savannah, Georgia, February 20–22, pp. 289–332 (2008)

    Google Scholar 

  4. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics. Addison Wesley, Boston (2005)

    Google Scholar 

  5. Huynh, V.N., Hu, C., Nakamori, Y., Kreinovich, V.: On Decision Making under Interval Uncertainty: A New Justification of Hurwicz Optimism-Pessimism Approach and Its Use in Group Decision Making. In: Proceedings of the 39th International Symposium on Multiple-Valued Logic ISMVL 2009, Naha, Okinawa, Japan, May 21–23, pp. 214–220 (2009)

    Google Scholar 

  6. Jaulin, L., et al.: Applied Interval Analysis. Springer, London (2001)

    MATH  Google Scholar 

  7. Kreinovich, V., Ferson, S.: A New Cauchy-Based Black-Box Technique for Uncertainty in Risk Analysis. Reliability Eng. & Systems Safety 85(1–3), 267–279 (2004)

    Article  Google Scholar 

  8. Kreinovich, V., Nguyen, H.T.: Towards A Neural-Based Understanding of the Cauchy Deviate Method for Processing Interval and Fuzzy Uncertainty. In: Proc. IFSA 2009, Lisbon, Portugal, July 20–24, pp. 1264–1269 (2009)

    Google Scholar 

  9. Magoc, T., Kreinovich, V.: Empirical Formulas for Economic Fluctuations: Towards A New Justification. In: Proceedings of the 28th North American Fuzzy Information Processing Society Annual Conference NAFIPS 2009, Cincinnati, Ohio, June 14–17 (2009)

    Google Scholar 

  10. Modave, F., Ceberio, M., Kreinovich, V.: Choquet Integrals and OWA Criteria as a Natural (and Optimal) Next Step After Linear Aggregation: A New General Justification. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 741–753. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Nguyen, H.T., Kreinovich, V.: Applications of Continuous Mathematics to Computer Science. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  12. Nguyen, H.T., Kreinovich, V., Sriboonchitta, S.: Stochastic Volatility Models and Financial Risk Measures: Towards New Justifications. In: Proceedings of the 2009 Singapore Economic Review Conference, Singapore, August 6–8 (2009)

    Google Scholar 

  13. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. CRC Press, Boca Raton (2006)

    Google Scholar 

  14. Rabinovich, S.: Measurement Errors and Uncertainties: Theory and Practice. American Institute of Physics, New York (2005)

    MATH  Google Scholar 

  15. Sheffi, Y.: Urban Transportation Networks. Prentice Hall, Englewood Cliffs (1985)

    Google Scholar 

  16. Singer, I.M., Sternberg, S.: Infinite groups of Lie and Cartan, Part 1. Journal d’Analyse Mathematique XV, 1–113 (1965)

    Article  MathSciNet  Google Scholar 

  17. Su, Y., Qin, X.: Strong convergence theorems for asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups. Fixed Point Theory and Applications, 1–11 (2006); Article ID 96215

    Google Scholar 

  18. Werbos, P.J.: Intelligence in the brain: A theory of how it works and how to build it. Neural Networks 22(3), 200–212 (2009)

    Article  Google Scholar 

  19. Wiener, N.: Cybernetics, or Control and Communication in the animal and the machine. MIT Press, Cambridge (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreinovich, V., Nguyen, H.T., Sriboonchitta, S. (2010). Symmetries: A General Approach to Integrated Uncertainty Management. In: Huynh, VN., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11960-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11960-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11959-0

  • Online ISBN: 978-3-642-11960-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics