Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 68))

  • 1079 Accesses

Abstract

This paper aims at presenting the state-of-the-art of Choquet integral in quantifying the uncertainty in financial economics. Not only Choquet integral becomes a suitable model for defining financial coherent risk measures in the investment context, it seems also possible to use Choquet integral calculations as a means for asset pricing.We address also utility aspect of Choquet integral risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acerbi, C.: Spectral risk measures of risk: a coherent representation of subjective risk aversion. J. Banking and Finance (7), 1505–1518 (2002)

    Google Scholar 

  2. Adams, D.A.: Choquet integrals in potential theory. Publications Matematiques (42), 3–66 (1998)

    Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risks. Mathematical Finance 9(3), 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (5), 131–292 (1953/1954)

    Google Scholar 

  5. Etheridge, A.: A Course in Financial Calculus. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Hadama, M., Sherris, M.: Contingent claim pricing using probability distortion operators: methods from insurance risk pricing and their relationship to financial theory. Applied Mathematical Finance 10(1), 19–47 (2003)

    Article  Google Scholar 

  7. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. J. Wiley, Chichester (2009)

    MATH  Google Scholar 

  8. Kreinovich, V., Nguyen, H.T., Sriboonchitta, S.: A new justification of Wang transform operator in financial risk analysis. Intern. Journ. Intell. Tech. and Applied Statist. 2(1), 45–57 (2009)

    Google Scholar 

  9. Labreuche, C., Grabisch, M.: Generalized Choquet-like aggregation functions for handling bipolar scales. European Journal of Operational Research 172(3), 931–955 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Linetsky, V.: The Path integral approach to finanial modeling and option pricing. Computational Economics (11), 129–163 (1998)

    Article  MATH  Google Scholar 

  11. Mancino, M., Malliavin, P.: Fourier series method for measurement of multivariate volatilities. Finance and Stochastics 6(1), 49–61 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nguyen, H.T.: An Introduction to Random Sets. Chapman and Hall/CRC Press (2006)

    Google Scholar 

  13. Sriboonchitta, S., Wong, W.K., Dhompogsa, S., Nguyen, H.T.: Stochastic Dominance and Applications to Finance, Risk and Economics. Chapman and Hall/CRC Press (2009)

    Google Scholar 

  14. Sriboonchitta, S., Nguyen, H.T., Kreinovich, V.: How to relate spectral risk measures and utilities. In: Proceedings of the Third Econometric Society of Thailand Conference, January 2010. Chiang Mai University, Thailand (2010) (to appear)

    Google Scholar 

  15. Wang, S.S.: Premium calculations by transforming the layer premium density. Astin Bulletin (26), 71–92 (1996)

    Google Scholar 

  16. Wang, S.S.: A universal framework for pricing financial and insurance risks. Astin Bulletin (33), 213–234 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, H.T., Sriboonchitta, S. (2010). On Choquet Integral Risk Measures. In: Huynh, VN., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11960-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11960-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11959-0

  • Online ISBN: 978-3-642-11960-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics