Abstract
Several clustering algorithms include one or more parameters to be fixed before its application. This is also the case of fuzzy c-means, one of the most well-known fuzzy clustering algorithms, where two parameters c and m are required. c corresponds to the number of clusters and m to the fuzziness of the solutions. The selection of these parameters is a critical issue because a bad selection can blur the clusters in the data. In this paper we propose a method for selecting an appropriate parameter m for fuzzy c-means based on an extensive computation. Our approach is based on the application of the clustering algorithm to several instantiations of the same data with different degrees of noise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Bezdek, J.C., Hathaway, R.J., Huband, J.M.: Visual Assessment of Clustering Tendency for Rectangular Dissimilarity Matrices. IEEE Trans. on Fuzzy Systems 15, 890–903 (2007)
Brand, R., Domingo-Ferrer, J., Mateo-Sanz, J.M.: Reference datasets to test and compare SDC methods for protection of numerical microdata. Technical report, European Project IST-2000-25069 CASC (2002)
CASC: Computational Aspects of Statistical Confidentiality, EU Project (Test Sets), http://neon.vb.cbs.nl/casc/
Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical disclosure control. IEEE Trans. on Knowledge and Data Engineering 14(1), 189–201 (2002)
Domingo-Ferrer, J., Torra, V.: Ordinal, Continuous and Heterogeneous k-Anonymity Through Microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)
Honda, K., Ichihashi, H., Masulli, F., Rovetta, S.: Linear Fuzzy Clustering With Selection of Variables Using Graded Possibilistic Approach. IEEE Trans. on Fuzzy Systems 15, 878–889 (2007)
Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy cluster analysis. Wiley, Chichester (1999)
Kaufman, L., Rousseeuw, P.J.: Finding groups in data: An introduction to cluster analysis. Wiley, Chichester (1990)
Hung, W.-L., Yang, M.-S., Chen, D.-H.: Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation. Pattern Recognition Letters 27(5), 424–438 (2006)
Khy, S., Ishikawa, Y., Kitagawa, H.: Parameter setting for a clustering method through an analytical study of real data. IPSJ Sig. Notes 78, 375–381 (2006)
Miyamoto, S.: Introduction to fuzzy clustering (in Japanese), Ed. Morikita, Japan (1999)
Templ, M.: Statistical Disclosure Control for Microdata Using the R-Package sdcMicro. Transactions on Data Privacy 1(2), 67–85 (2008)
Tseng, V.S., Kao, C.-P.: A Novel Similarity-Based Fuzzy Clustering Algorithm by Integrating PCM and Mountain Method. IEEE Trans. on Fuzzy Systems 15, 1188–1196 (2007)
Wang, Y., Li, C., Zuo, Y.: A Selection Model for Optimal Fuzzy Clustering Algorithm and Number of Clusters Based on Competitive Comprehensive Fuzzy Evaluation. IEEE Trans. on Fuzzy Systems 17(3), 568–577 (2009)
Yu, J., Yang, M.-S.: A Generalized Fuzzy Clustering Regularization Model With Optimality Tests and Model Complexity Analysis. IEEE Trans. on Fuzzy Systems 15, 904–915 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jaimes, L.G., Torra, V. (2010). On the Selection of Parameter m in Fuzzy c-Means: A Computational Approach. In: Huynh, VN., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11960-6_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-11960-6_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11959-0
Online ISBN: 978-3-642-11960-6
eBook Packages: EngineeringEngineering (R0)