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Dempster-Shafer reasoning in large partially
ordered sets. Applicationsin Machine Learning

Thierry Denceux and Marie-Héléne Masson

Abstract The Dempster-Shafer theory of belief functions has proedukta pow-
erful formalism for uncertain reasoning. However, beligidtions on a finite frame
of discernment2 are usually defined in the power sét esulting in exponential
complexity of the operations involved in this frameworkgk@as combination rules.
WhenQ is linearly ordered, a usual trick is to work only with intefs, which dras-
tically reduces the complexity of calculations. In this pgpve show that this trick
can be extrapolated to frames endowed with an arbitrangéegtructure, not neces-
sarily a linear order. This principle makes it possible tplgghe Dempster-Shafer
framework to very large frames such as, for instance, theepeet of a finite se®,
or the set of partitions of a finite set. Applications to migtbel classification and
ensemble clustering are demonstrated.

1 Introduction

The theory of belief functions originates from the pionegrivork of Dempster
[1, 2] and Shafer [16]. In the 1990’s, the theory was furthevedloped by Smets
[19, 22], who proposed a non probabilistic interpretatieidrred to as the “Trans-
ferable Belief Model”) and introduced several new toolsifdormation fusion and
decision making. Big steps towards the application of béliections to real-world
problems involving many variables have been made with theduction of effi-
cient algorithms for computing marginals in valuationdsystems [17, 18].
Although there has been some work on belief functions onicoats frames
(see, e.g., [12, 21]), the theory of belief functions hasnbmainly applied in the
discrete setting. In this case, all functions introducettiétheory as representations
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of evidence (including mass, belief, plausibility and coomality functions) are
defined from the Boolean lattice?,C) to the interval[0,1]. Consequently, all
operations involved in the theory (such as the conversi@mefform of evidence to
another, or the combination of two items of evidence usinghpgter’s rule) have
exponential complexity with respect to the cardinalityof the frameQ, which
makes it difficult to use the Dempster-Shafer formalism iry\arge frames.

When the frame2 is linearly ordered, a usual trick is to constrain the fodet e
ments (i.e., the subsets 6f such tham(A) > 0) to beintervals(see, for instance,
[5]). The complexity of manipulating and combining massdtions is then dras-
tically reduced from % to K2. As we will show, most formula of belief function
theory work for intervals, because the set of intervals goed with the inclusion
relation has dattice structure As shown recently in [10], belief functions can be
defined on any lattice, not necessarily Boolean. In this pdpis trick will be ex-
tended to the case of frames endowed with a lattice structat@ecessarily a linear
order. As will be shown, a lattice of intervals can be cordted, on which belief
functions can be defined. This approach makes it possibleftoedbelief functions
on very large frames (such as the power set of a finit€selr the set of partitions
of a finite set) with manageable complexity.

The rest of this paper is organized as follows. The necedsackground on
belief functions and on lattices will first be recalled in 8eies 2 and 3, respectively.
Our main idea will then be exposed in Section 4. It will be &uxbto define belief
functions on set-valued variables, with application to tirlabel classification, in
Section 5. The second example, presented in Section 6,amidern belief functions
on the set of partitions of a finite set, with application teemble clustering. Section
7 will then conclude this paper.

2 Bdief Functions: Basic Notions

Let Q be a finite set. Astandard) mass functioon Q is a functionm: 22 — [0, 1]
such that
m(A) = 1. Q)
ACQ

The subset# of Q such tham(A) > 0 are called théocal elementsf m. Function
m is said to benormalizedif 0 is not a focal element. A mass functiomis often
used to model an agent’s beliefs about a variabl@king a single but ill-known
value ap in Q [22]. The quantitym(A) is then interpreted as the measure of the
belief that is committe@éxactlyto the hypothesisy € A. Full certainty corresponds
to the case whema({w}) = 1 for somewy € Q, while total ignorance is modelled
by thevacuougnass function verifyingn(Q) = 1.

To each mass functiancan be associated anplicability function band abelief
function beldefined as follows:
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b(A) = BZ m(B) (2)
CA
bel(A) = ¥ m(B) = b(A) — m(0). 3)
BCABZA

These two functions are equal whanis normalized. However, they need to be
distinguished when considering non normalized mass fanstiFunctiorbel has
easier interpretation, &®l(A) corresponds to degree of beliein the proposition
“The true valuewy of X belongs toA”. However, functiorb has simpler mathemat-
ical properties. For instancen can be recovered froimas

m(A) = BZA<—1>‘A\B‘b<B>7 (4)

where| - | denotes cardinality. Functiam is said to be théMobius transforrmof b.
For any functionf from 2% to [0,1] such thatf (Q) = 1, f is totally monotone if
and only if its Mobius transfornm is positive and verifies (1) [16]. Henck,(and
bel) are totally monotone.

Other functions related tm are theplausibility function defined as

pI(A) = 5 m(B)=1-b(A) (5)
BNA+0

and thecommonality functiolfor co-Mobius transform db) defined as
q(A) = > m(B). (6)
m can be recovered fropusing the following relation:

m(A) = B;( ~1)P\Wq(B). (7)

Functionsm, bel, b, pl and q are thus in one-to-one correspondence and can be
regarded as different facets of the same information.

Let us now assume that we receive two mass functiopnsnd m, from two
distinct sources of information assumed to be reliablenfheandm, can be com-
bined using theonjunctive sunfor unnormalized Dempster’s rule of combination)
defined as follows:

(MEM)(A) = Z my (B)my(C). 8)
B A

This rule is commutative, associative, and admits the vasurass function as neu-
tral element. Lety; )2 denote the commonality function correspondingi@my.

It can be computed fromy andgy, the commonality functions associatedtpand
my, as follows:

h@E2(A) = qi(A) - 2(A), YVAC Q. (9)
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The conjunctive sum has a dual disjunctive rule [20], olediby substituting
union for intersection in (8):

(MOm)(A) = Z my(B)m(C). (10)
BCA

It can be shown that
b102(A) = b1(A)-bz(A), VAC Q, (11)

which is the counterpart of (9).

3 Bdlief Functions on General Lattices

As shown by Grabisch [10], the theory of belief function candefined not only
on Boolean lattices, but on any lattice, not necessarilyl®uon We will first recall
some basic definitions about lattices. Grabisch’s ressksl in this work will then
be summarized.

3.1 Lattices

A review of lattice theory can be found in [15]. The followipgesentation follows
[10].

LetL be a finite set anét a partial ordering (i.e., a reflexive, antisymmetric and
transitive relation) orL. The structurgL, <) is called aposet We say tha{L, <)
is alattice if, for every x,y € L, there is a unique greatest lower bound (denoted
XAY) and a unique least upper bound (denoted). Operations\ andV are called
the meetandjoin operations, respectively. For finite lattices, the greaagémment
(denotedr) and the least element (denotéflalways exist. A strict partial ordering
< is defined from< asx < y if x <y andx # y. We say thak covers if y < x and
there is naz such thaly < z < x. An elemenix of L is anatomif it covers only one
element and this element is. It is a co-atomif it is covered by a single element
and this element iS".

Two latticesL andL’ areisomorphicif there exists a bijective mappinfyfrom
L to L’ such thak <y < f(x) < f(y). For any posetL, <), we can define its dual
(L,>) by inverting the order relation. A lattice autodualif it is isomorphic to its
dual.

A lattice is distributiveif (xVy)Az= (xA2)V (yAz) holds for allx,y,z € L.
For anyx € L, we say thatx has a complement it if there existsx’ € L such
thatxAX = L andxVv X = T. L is said to becomplementedf any element has
a complement. Boolean lattices are distributive and comeptged lattices. Every
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Boolean lattice is isomorphic t@%, C) for some sef2. For the latticg2?,C), we
havehn=nN,v=U, L =0andT = Q.

A closure systenon a set© is a family ¢ of subsets of® containing®, and
closed under inclusion. As shown in [15], any closure systemC) is a lattice
with A =N andV = U defined by

AUB=(){Ce¥|AUBCC}, VY(AB)ec%? (12)

3.2 Belief Functions on Lattices

Let (L, <) be a finite poset having a least element, and lbe a function frormL
to R. The Mobius transfornof f is the functionm: L — R defined as the unique
solution of the equation:

f(x)= Z m(y), WxelL. (13)

y<X

Functionm can be expressed as:

m(x) = X (y), (14)
(X) y;u(y x)f(y)

wherep(x,y) : L> — R is theMobius functionwhich is uniquely defined for each
poset(L, <). Theco-Mobius transfornof f is defined as:

ax) =y m(y), (15)

andm can be recovered frompas:

m(x) = Y)a(y). (16)
(%) y;u(x y)a(y)

Let us now assume thét, <) is a lattice. Following Grabisch [10], a function
b:L— [0,1] will be called an implicability function ot if b(T) =1, and its Mobius
transformis non negative. The corresponding belief fumdtel can then be defined
as:

bel(x) =b(x) —m(L), WvxeL.

Note that Grabisch [10] considered only normal belief fiored, in which casé =
bel. As shown in [10], any implicability function oiL, <) is totally monotone.
However, the converse does not hold in general: a totallyatae function may
not have a non negative Mobius transform.

As shown in [10], most results of Dempster-Shafer theory lsartransposed
in the general lattice setting. For instance, the conjuacsum can be extended
by replacing® by A in (8), and relation (9) between commonality functions is
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preserved. Similarly, we can extend the disjunctive ru@® @y substituting/ for U
in (10), and relation (11) still holds.

The extension of other notions from classical Dempsterfé&3ttheory may re-
quire additional assumptions @h, <). For instance, the definition of the plausibil-
ity function pl as the dual ob using (5) can only be extended to autodual lattices
[10].

4 Bdlief functionswith Lattice Intervals as Focal Elements

Let Q be afinite frame of discernment. If the cardinality®fis very large, working

in the Boolean lattic¢2?, C) may become intractable. This problem can be circum-
vented by selecting aaventsonly a strict subset of2. As shown in Section 3, the
Dempster-Shafer calculus can be applied in this restret¢df events as long as it
has a lattice structure. To be meaningful, the definitiorveh¢s should be based on
some underlying structure of the frame of discernment.

When the fram&? is linearly ordered, then a usual trick consists in assignin
non zero masses only to intervals. Here, we propose to exeddormalize this
approach, by considering the more general case w@dnas a lattice structure for
some partial orderingc. The set of events is then defined as the.getf lattice
intervals in(Q, <). We will show that(.#,C) is then itself a lattice, in which the
Dempster-Shafer calculus can be applied.

This lattice(.#, C) of intervals of a latticg Q, <) will first be introduced more
precisely in Section 4.1. The definition of belief functians (.7, C) will then be
dealt with in Section 4.2.

4.1 The Lattice(.#,C)

Let Q be a finite frame of discernment, and fetbe a partial ordering of2 such
that(Q, <) is a lattice, with greatest elementand least element. A subset of
Q is a (lattice) interval if there exists elemeatandb of Q such that

| ={xe Qla<x<b}.

We then denoté as|a,b]. Obviously,Q is the interval[ L, T] and 0 is the empty
interval represented bja,b] for any a andb such thata < b does not hold. Let
7 C 29 be the set of intervals, including the empty set 0:

4 ={[abllabe Q,a<b}u{0}.

The intersection of two intervals is an interval:
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abinied = {[a\/c,b/\d] ifave<bad,
0 otherwise.
Consequently,7 is a closure system, ar(d”, C) is a lattice, with least element 0
and greatest elemefit. The meet operation is the intersection, and the join opera-
tion U is defined by
[a,b]U[c,d] = [anc,bvd]. 17

Clearly, [a,b] C [a,b]U[c,d] and [c,d] C [a,b] U [c,d], hence[a,b] U [c,d] C
[a,b] L [c,d]. We note that.#,C) is a subposet, but not a sublattice @, <),
because they do not share the same join operation.

The atoms of .#, C) are the singletons a2, while the co-atoms are intervals
of the form[L,x], wherex is a co-atom of Q, <), or [x, T], wherex is an atom of
(Q,<). The lattice(.#, C) is usually neither autodual, nor Boolean.

4.2 Belief Functions on(.#,C)

Let m be a mass function fron? to [0, 1]. Implicability, belief and commonality
functions can be defined dn#, C) as explained in Section 3. Conversetycan
be recovered fronb andq using (14) and (16), where the Mobius functigrnde-
pends on the lattice#, C). As the cardinality of# is at most proportional t&?,
whereK is the cardinality ofQ, all these operations, as well as the conjunctive and
disjunctive sums can be performed in polynomial time.

Given a mass functiomon (.#, C), we may define a functiom* on (22,C) as

oy [T TAS S
~]o otherwise.

Let b* andg* be the implicability and commonality functions associatedn*. It
is obvious thab*(1) = b(l) andg*(I) = q(l) for all | € .#. Letmy andm, be two
mass functions 007, C), and letm; andm; be their “images” in2?, C). Because
the meet operations are identical(isf, C) and (29, C), computing the conjunctive
sum in any of these two lattices yields the same result, asawve h

(MiOm3)(A) {0 otherwise.

However, computing the disjunctive sum (8?,C) or (.#,C) is not equivalent,
because the join operation (¥, C), defined by (17), is not identical to the union
operation in 2. Consequently, when computing the disjunctive surmpandms,
the producim; (A)m;(B) is transferred taAU B, whereas the produaty (A)mp(B)

is transferred tcAL B when combiningm andmp. Let (mp©nmy)* be the image
of mOm in (22,C). AsALIBD AUB, (my@ny)* is thus anouter approxima-
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tion [7, 4] of m; ©m;. When masses are assigned to intervals of the latfize<),
doing the calculations il.#, C) can thus be see an approximation of the calcula-
tions in (22, C), with a loss of information only when a disjunctive combinatis
performed.

5 Reasoning with Set-valued Variables

In this section, we present a first application of the aboves® to the represen-
tation of knowledge regarding set-valued variables. Theegad framework will be
presented in Section 5.1, and it will be applied to multididiassification in Section
5.2.

5.1 Evidence on Set-valued Variables

Let © be a finite set, and |& be a variable taking values in the power sét Such
a variable is said to be set-valued,amnjunctive]7, 24]. For instance, in diagnosis
problems,® may denote the set of faults that can possibly occur in a systed
X the set of faults actually occurring at a given time, under aissumption that
multiple faults can occur. In text classificatia®,may be a set of topics, arklthe
list of topics dealt with in a given text, etc.

Defining belief functions on the Iattiqt?_ze, Q) is practically intractable, because
of the double exponential complexity involved. However,may exploit the lattice
structure induced by the orderingin Q = 29, using the general approach outlined
in Section 4 [6].

For any two subseta andB of © such thatA C B, the interval[A, B] is defined
as

[AB]={CcOlAcCCB}.

The set of intervals of the lattigg2, C) is thus
s ={|ABJJABc QACB}UDg,

where @, denotes the empty sets Of (as opposed to the empty ste®j. Clearly,

7 C22 =22 The interval/A, B] can be seen as the specification of an unknown
subseC of © thatsurelycontains all elements &, andpossiblycontains elements

of B. Alternatively,C surely containgio element ofB.
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5.2 Multi-label Classification

In this section, we present an application of the framewenketbped in this paper
to multi-label classificatioj26, 23, 25]. In this kind of problems, each object may
belong simultaneously to several classes, contrary taatdrsingle-label problems
where objects belong to only one class. For instance, inémetgieval, each image
may belong to several semantic classes such as “beach” laritirin such prob-
lems, the learning task consists in predicting the valua®ttass variable for a new
instance, based on a training set. As the class variablé¢-isakesd, the framework
developed in the previous section can be applied.

5.2.1 Training Data

In order to construct a multi-label classifier, we generabgume the existence of

a labeled training set, composedroéxamplegx;,Y;), wherex; is a feature vector
describing instancg andy; is a label set for that instance, defined as a subset of
the set® of classes. In practice, however, gathering such high tyiaformation is

not always feasible at a reasonable cost. In many probléms ts no ground truth

for assigning unambiguously a label set to each instanckthenopinions of one or
several experts have to be elicited. Typically, an expdftssmetimes express lack

of confidence for assigning exactly one label set.

The formalism developed in this paper can easily be usedndléauch situa-
tions. In the most general setting, the opinions of one czisdexperts regarding the
set of classes that pertain to a particular instamoay be modeled by a mass func-
tionm in (#,C). Aless general, but arguably more operational option ig$trict
m; to be categorical, i.e., to have a single focal elemjénB;], with A, C B; C ©.
The setA is then the set of classes thagrtainly applyto example, while B; is
the set of classes thpbssiblyapply to that instance. The usual situation of precise
labeling is recovered in the special case whigre: B;.

5.2.2 Algorithm

The evidentiak nearest neighbor rule introduced in [3] can be extendedttathti-
label framework as follows. Lab(x) denote the set dfnearest neighbors of a new
instance described by feature vectpaccording to some distance measdyand

Xj an element of that set with labg;, Bi]. This item of evidence can be described
by the following mass function i, C):

m ([A,Bi]) = aexp(—yd(x,xi)),
m([0e,0]) = 1— aexp(—yd(x,xi)),

wherea andy are two parameters such thatQx < 1. Thesek mass functions are
then combined using the conjunctive sum.
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For decision making, the following simple and computatifyretficient rule can
be used. LeY be the predicted label set for instancdo decide whether to include
each clas® < O or not, we compute the degree of belefi([{ 6}, O]) that the true

label sety containsd, and the degree of beliékl([0, { 6}]) that it does not contain
6. We then defing’ as

Y ={6<0|bel({6},0]) > bel([0,{6]])}.

5.2.3 Experiment

Theemotion datasét presented in [23], consist of 593 songs annotated by expert
according to the emotions they generate. There are 6 claamsd®ach song was
labeled as belonging to one or several classes. Each songlseadescribed by 8
rhythmic features and 64 timbre features, resulting ina twit72 features. The data
was split into a training set of 391 examples and a test sed»EXamples.

This dataset was initially constructed in such a way thaheéastance is as-
signed a single set of labeYs To assess the performances of our approach in learn-
ing from data with imprecise labels such as postulated ini&e6.2.1 above, we
randomly simulated an imperfect labeling proceéysproceeding as follows.

Lety; = (i1,...,Yik ) be the vector of —1,1}K such thatyy = 1 if 6 € Y; and
yik = —1 otherwise. For each instanicend each clasi, we generated a probability
of error pix from a beta distribution with parameteas=b = 0.5, and we changed
Yik to —Yix with probability pi, resulting in a noisy label vectgt. We then defined
intervals[A;,Bi] such thatA; = {6 € © | yj = 1 andpi < 0.2} andB; = {6 €
O |y, =1lorpy>02}.

The intuition behind the above model may be described asvfisllEach number
pik represents the probability that the membership of instamecelass, will be
wrongly assessed by the expert. We assume that these nucalndss provided by
the expert as a way to describe the uncertainty of his/hessasgents, which allows
us to label each instancdy a pair of set$A;, Bj].

Our method (hereafter referred to as EMNN) was applied both with noisy
labelsy; and with imprecise label§A;, B;). The features were normalized so as to
have zero mean and unit variance. Parametensdy were fixed at ®5 and 05, re-
spectively. As a reference method, we used the WIN method introduced in [26],
which was shown to have good performances as compared toexiehg multi-
label classification algorithms. The MKNN algorithm was applied to noisy labels
only, as it is not clear how imprecise labels could be hand&dg this method.

For evaluation, we used accuracy as a performance meastiredias:

n v AY
Accuracy= 1g M mﬁ',
N& YUY

1 This dataset can be downloaded frbirt p: // m kd. csd. aut h. gr/ mul ti | abel . htni .
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wheren is the number of test exampléss the true label set for exampl'esand\?i
is the predicted label set for the same example.

Figure 1 shows the mean accuracy plus or minus one standaedide over five
generations of noisy and imprecise labels, with the follmyuinethods: EMLKNN
with imprecise label§A;, Bi], EML-KNN with noisy labels and MLkNN with noisy
labels. The EMLKNN method with noisy labels outperforms the MdNN trained
using the same data, while the EMINN algorithm with imprecise labels clearly
yields the best performances, which demonstrates the beoffiandling imprecise
labels using our approach.

Emotions

0.5

0.4r

o
w
T

Accuracy

I
N

—&— EML-kNN imprecise labels
0.1 —— EML-kNN noisy labels
—6— ML-kNN noisy labels

i i i i i i i j
5 10 15 20 25 30 35 40
k

Fig. 1 Mean accuracy (plus or minus one standard deviation) owéals &s a function ok for the
emotions dataset with the following methods: EMNN with imprecise label$A;, B;), EML-KNN
with noisy labels and MLNN with noisy labels.

6 Belief Functions on Partitions

Ensemble clustering methods [11, 9] aim at combining mialiustering solutions
or partitions into a single one, offering a better desooiptf the data. In this sec-
tion, we explain how to address this fusion problem usinggéeeral framework
developed in this paper. Each clustering algorithm (ortehes) can be considered
as a partially reliable source, giving an opinion about the tunknown, partition of
the objects. This opinion provides evidence in favor of aodgtossible partitions.
Moreover, we suppose that the reliability of each sourceescdbed by a confi-
dence degree, either assessed by an external agent ortedalsing a class validity
index. Manipulating beliefs defined on sets of partitiongitsactable in the usual
case where the number of potential partitions is high (famegle, a set composed
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of 6 elements has 203 potential partitions!) but it can beagaable using the lat-
tice structure of partitions, as it will be explained belduote that, due to space
limitations, only the main principles will be given. Moretdéds may be found in
[13, 14].

First, basic notions about the lattice of partitions of asgetrecalled in Section
6.1, then our approach is explained and illustrated in 8edi2 using a synthetic
data set.

6.1 Lattice of Partitions

Let E denote a finite set af objects. A partitionp is a set of non empty, pairwise
disjoint subsetg;,... Ex of E, such that their union is equal Ex Every partitionp
can be associated to an equivalence relation (i.e., a redlesymmetric, and tran-
sitive binary relation) ori, denoted byR,, and characterized, for alk,y) € E?,
by:

1 if xandy belong to the same cluster m

Rp(x,y) = {0 otherwise.

The set of all partitions dE, denoted?, can be partially ordered using the following
ordering relation: a partitiop is said to bdinerthan a partitiorp’ on the same s&

(p = p) if the clusters ofp can be obtained by splitting those @f(or equivalently,

if each cluster ofY is the union of some clusters pj. This partial ordering can be
alternatively defined using the equivalence relations@atad top andp':

p=p & Ry(xYy) <Ry(xy) V(xy)eE2%

The setQ endowed with the<-order has a lattice structure [15]. In this lattice,
the meetp A P’ of two partitionsp andp/, is defined as the coarsest partition among
all partitions finer tharp and p’. The clusters of the megin p’' are obtained by
considering pairwise intersections between clusterp ahd p’. The equivalence
relationR,, y is simply obtained as the minimum B andRy. The joinpV p' is
similarly defined as the finest partition among the ones tteat@arser thap andp’.
The equivalence relatioR,, y is given by thetransitive closureof the maximum
of Rp andRy. The least element of the lattice is the finestpartition, denoted
po=(1/2/.../n),in which each objectis a cluster. The greatest elemesft(Q, <)
is the coarsestpartition denotege = (123.n), in which all objects are put in the
same cluster. In this order, each partition precedes eatitipn derived from it by
aggregating two of its clusters. Similarly, each partittmvers all partitions derived
by subdividing one of its clusters in two clusters.

A closed interval ofQ is defined as:

PP ={pc[p=p=P} (18)
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It is a particular set of partitions, namely, the set of alitpians finer thanp and
coarser tharp.

6.2 Ensemble Clustering

6.2.1 Principle

We propose to use the following strategy for ensemble dlingte

1) Mass generation: Givenclusterers, build a collection afmass functionsnt,
mé,...,m’ on the lattice of intervals; the way of choosing the focahedats and
allocating the masses from the results of several clustelepends mainly on
the applicative context and on the nature of the clustereteeé ensemble. An
example will be given in Section 6.2.2.

2) Aggregation: Combine themass functions into a single one using the conjunc-
tive sum. The result of this combination is a mass funciiomith focal elements
[Ek,ﬁk] and associated masseg, k= 1,...,s. The equivalence relations corre-
sponding top, andpy will be denotedR, andRy, respectively.

3) Decision making: Lep;; denote the partition witlin — 1) clusters, in which the
only objects which are clustered together are objeatsd j (partition pjj is an
atom in the latticg Q, <)). Then, the intervalp;;, pe] represents the set of all
partitions in which objects and j are put in the same cluster. Our belief in the
fact thati andj belongs to the same cluster can be characterized by théitgdi
of [pij, Pe], which can be computed as follows:

ool <bellpy )= S m= F m= 3 mAD). (9
(P PRI C[Pij . PE] K=1

B =hij

Matrix Bel = (Belj) can be considered as a new similarity matrix and can be
in turn clustered using, e.g., a hierarchical clusterirgpathm. If a partition is
needed, the classification tree (dendogram) can be cut ac#isg level so as to
insure a user-defined number of clusters.

6.2.2 Example

The data set used to illustrate the method is the half-rirtg dat inspired from
[8]. It consists of two clusters of 100 points each in a tworeihnsional space. To
build the ensemble, we used the fuzzgneans algorithm with a varying number of
clusters (from 6 to 11). The six hard partitions computediftbe soft partitions are
represented in Figure 2.

Each hard partitioq (I = 1,6) was characterized by a confidence degreex],
which was computed using a validity index measuring theityuaf the partition.
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Fig. 2 Half-rings data set. Individual partitions.

Considering that the true partition is coarser than eaclviohehl one, and taking
into account the uncertainty of the clustering processfahewing mass functions

were defined: o 0 o1
pPi,Pe]) =1—0
{m‘(Q)on. (20)

The six mass functions (with two focal elements each) weer ttombined using
the conjunctive rule of combination. A tree was computednfrmatrix Bel using
Ward’s linkage. This tree, represented in the left part guFé 3, indicates a clear
separation in two clusters. Cutting the tree to obtain twsters yields the partition
represented in the right part of Figure 3. We can see thatdheal structure of the
data is perfectly recovered.

7 Conclusion

The exponential complexity of operations in the theory didiéunctions has long
been seen as a shortcoming of this approach, and has prévenspplication to
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Fig. 3 Half-rings data set. Ward’s linkage computed fr@®l and derived consensus.

very large frames of discernment. We have shown in this pidgaéthe complexity
of the Dempster-Shafer calculus can be drastically redifdeelief functions are
defined over a subset of the power set with a lattice structieen the frame of
discernment forms itself a lattice for some partial ordgritne set of events may
be defined as the set of intervals in that lattice. Using theshwd, it is possible to

define and manipulate belief functions in very large frameshsas the power set
of a finite set, or the set of partitions of a set of objectssTdpproach opens the
way to the application of Dempster-Shafer theory to comirally demanding

Machine Learning tasks such as multi-label classificatimh @nsemble clustering.
Other potential applications of this framework include ertain reasoning about
rankings.
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