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Dempster-Shafer reasoning in large partially
ordered sets: Applications in Machine Learning

Thierry Denœux and Marie-Hélène Masson

Abstract The Dempster-Shafer theory of belief functions has proved to be a pow-
erful formalism for uncertain reasoning. However, belief functions on a finite frame
of discernmentΩ are usually defined in the power set 2Ω , resulting in exponential
complexity of the operations involved in this framework, such as combination rules.
WhenΩ is linearly ordered, a usual trick is to work only with intervals, which dras-
tically reduces the complexity of calculations. In this paper, we show that this trick
can be extrapolated to frames endowed with an arbitrary lattice structure, not neces-
sarily a linear order. This principle makes it possible to apply the Dempster-Shafer
framework to very large frames such as, for instance, the power set of a finite setΩ ,
or the set of partitions of a finite set. Applications to multi-label classification and
ensemble clustering are demonstrated.

1 Introduction

The theory of belief functions originates from the pioneering work of Dempster
[1, 2] and Shafer [16]. In the 1990’s, the theory was further developed by Smets
[19, 22], who proposed a non probabilistic interpretation (referred to as the “Trans-
ferable Belief Model”) and introduced several new tools forinformation fusion and
decision making. Big steps towards the application of belief functions to real-world
problems involving many variables have been made with the introduction of effi-
cient algorithms for computing marginals in valuation-based systems [17, 18].

Although there has been some work on belief functions on continuous frames
(see, e.g., [12, 21]), the theory of belief functions has been mainly applied in the
discrete setting. In this case, all functions introduced inthe theory as representations

Thierry Denœux
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of evidence (including mass, belief, plausibility and commonality functions) are
defined from the Boolean lattice(2Ω ,⊆) to the interval[0,1]. Consequently, all
operations involved in the theory (such as the conversion ofone form of evidence to
another, or the combination of two items of evidence using Dempster’s rule) have
exponential complexity with respect to the cardinalityK of the frameΩ , which
makes it difficult to use the Dempster-Shafer formalism in very large frames.

When the frameΩ is linearly ordered, a usual trick is to constrain the focal ele-
ments (i.e., the subsets ofΩ such thatm(A) > 0) to beintervals(see, for instance,
[5]). The complexity of manipulating and combining mass functions is then dras-
tically reduced from 2K to K2. As we will show, most formula of belief function
theory work for intervals, because the set of intervals equipped with the inclusion
relation has alattice structure. As shown recently in [10], belief functions can be
defined on any lattice, not necessarily Boolean. In this paper, this trick will be ex-
tended to the case of frames endowed with a lattice structure, not necessarily a linear
order. As will be shown, a lattice of intervals can be constructed, on which belief
functions can be defined. This approach makes it possible to define belief functions
on very large frames (such as the power set of a finite setΩ , or the set of partitions
of a finite set) with manageable complexity.

The rest of this paper is organized as follows. The necessarybackground on
belief functions and on lattices will first be recalled in Sections 2 and 3, respectively.
Our main idea will then be exposed in Section 4. It will be applied to define belief
functions on set-valued variables, with application to multi-label classification, in
Section 5. The second example, presented in Section 6, will concern belief functions
on the set of partitions of a finite set, with application to ensemble clustering. Section
7 will then conclude this paper.

2 Belief Functions: Basic Notions

Let Ω be a finite set. A(standard) mass functionon Ω is a functionm : 2Ω → [0,1]
such that

∑
A⊆Ω

m(A) = 1. (1)

The subsetsA of Ω such thatm(A) > 0 are called thefocal elementsof m. Function
m is said to benormalizedif /0 is not a focal element. A mass functionm is often
used to model an agent’s beliefs about a variableX taking a single but ill-known
valueω0 in Ω [22]. The quantitym(A) is then interpreted as the measure of the
belief that is committedexactlyto the hypothesisω0 ∈ A. Full certainty corresponds
to the case wherem({ωk}) = 1 for someωk ∈ Ω , while total ignorance is modelled
by thevacuousmass function verifyingm(Ω) = 1.

To each mass functionmcan be associated animplicability function band abelief
function beldefined as follows:
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b(A) = ∑
B⊆A

m(B) (2)

bel(A) = ∑
B⊆A,B6⊆A

m(B) = b(A)−m( /0). (3)

These two functions are equal whenm is normalized. However, they need to be
distinguished when considering non normalized mass functions. Functionbel has
easier interpretation, asbel(A) corresponds to adegree of beliefin the proposition
“The true valueω0 of X belongs toA”. However, functionb has simpler mathemat-
ical properties. For instance,mcan be recovered fromb as

m(A) = ∑
B⊆A

(−1)|A\B|b(B), (4)

where| · | denotes cardinality. Functionm is said to be theMöbius transformof b.
For any functionf from 2Ω to [0,1] such thatf (Ω) = 1, f is totally monotone if
and only if its Möbius transformm is positive and verifies (1) [16]. Hence,b (and
bel) are totally monotone.

Other functions related tom are theplausibility function, defined as

pl(A) = ∑
B∩A 6= /0

m(B) = 1−b(A) (5)

and thecommonality function(or co-Möbius transform ofb) defined as

q(A) = ∑
B⊇A

m(B). (6)

m can be recovered fromq using the following relation:

m(A) = ∑
B⊇A

(−1)|B\A|q(B). (7)

Functionsm, bel, b, pl and q are thus in one-to-one correspondence and can be
regarded as different facets of the same information.

Let us now assume that we receive two mass functionsm1 and m2 from two
distinct sources of information assumed to be reliable. Then m1 andm2 can be com-
bined using theconjunctive sum(or unnormalized Dempster’s rule of combination)
defined as follows:

(m1 ∩©m2)(A) = ∑
B∩C=A

m1(B)m2(C). (8)

This rule is commutative, associative, and admits the vacuous mass function as neu-
tral element. Letq1 ∩©2 denote the commonality function corresponding tom1 ∩©m2.
It can be computed fromq1 andq2, the commonality functions associated tom1 and
m2, as follows:

q1 ∩©2(A) = q1(A) ·q2(A), ∀A⊆ Ω . (9)
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The conjunctive sum has a dual disjunctive rule [20], obtained by substituting
union for intersection in (8):

(m1 ∪©m2)(A) = ∑
B∪C=A

m1(B)m2(C). (10)

It can be shown that

b1 ∪©2(A) = b1(A) ·b2(A), ∀A⊆ Ω , (11)

which is the counterpart of (9).

3 Belief Functions on General Lattices

As shown by Grabisch [10], the theory of belief function can be defined not only
on Boolean lattices, but on any lattice, not necessarily Boolean. We will first recall
some basic definitions about lattices. Grabisch’s results used in this work will then
be summarized.

3.1 Lattices

A review of lattice theory can be found in [15]. The followingpresentation follows
[10].

Let L be a finite set and≤ a partial ordering (i.e., a reflexive, antisymmetric and
transitive relation) onL. The structure(L,≤) is called aposet. We say that(L,≤)
is a lattice if, for every x,y ∈ L, there is a unique greatest lower bound (denoted
x∧y) and a unique least upper bound (denotedx∨y). Operations∧ and∨ are called
the meetand join operations, respectively. For finite lattices, the greatest element
(denoted⊤) and the least element (denoted⊥) always exist. A strict partial ordering
< is defined from≤ asx < y if x≤ y andx 6= y. We say thatx covers yif y < x and
there is noz such thaty < z< x. An elementx of L is anatomif it covers only one
element and this element is⊥. It is a co-atomif it is covered by a single element
and this element is⊤.

Two latticesL andL′ areisomorphicif there exists a bijective mappingf from
L to L′ such thatx≤ y⇔ f (x) ≤ f (y). For any poset(L,≤), we can define its dual
(L,≥) by inverting the order relation. A lattice isautodualif it is isomorphic to its
dual.

A lattice is distributive if (x∨ y)∧ z = (x∧ z)∨ (y∧ z) holds for allx,y,z∈ L.
For anyx ∈ L, we say thatx has a complement inL if there existsx′ ∈ L such
that x∧ x′ = ⊥ andx∨ x′ = ⊤. L is said to becomplementedif any element has
a complement. Boolean lattices are distributive and complemented lattices. Every
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Boolean lattice is isomorphic to(2Ω ,⊆) for some setΩ . For the lattice(2Ω ,⊆), we
have∧ = ∩, ∨ = ∪, ⊥ = /0 and⊤ = Ω .

A closure systemon a setΘ is a family C of subsets ofΘ containingΘ , and
closed under inclusion. As shown in [15], any closure system(C ,⊆) is a lattice
with ∧ = ∩ and∨ = ⊔ defined by

A⊔B=
⋂
{C∈ C |A∪B⊆C}, ∀(A,B) ∈ C

2. (12)

3.2 Belief Functions on Lattices

Let (L,≤) be a finite poset having a least element, and letf be a function fromL
to R. TheMöbius transformof f is the functionm : L → R defined as the unique
solution of the equation:

f (x) = ∑
y≤x

m(y), ∀x∈ L. (13)

Functionm can be expressed as:

m(x) = ∑
y≤x

µ(y,x) f (y), (14)

whereµ(x,y) : L2 → R is theMöbius function, which is uniquely defined for each
poset(L,≤). Theco-Möbius transformof f is defined as:

q(x) = ∑
y≥x

m(y), (15)

andmcan be recovered fromq as:

m(x) = ∑
y≥x

µ(x,y)q(y). (16)

Let us now assume that(L,≤) is a lattice. Following Grabisch [10], a function
b : L→ [0,1] will be called an implicability function onL if b(⊤)= 1, and its Möbius
transform is non negative. The corresponding belief functionbel can then be defined
as:

bel(x) = b(x)−m(⊥), ∀x∈ L.

Note that Grabisch [10] considered only normal belief functions, in which caseb =
bel. As shown in [10], any implicability function on(L,≤) is totally monotone.
However, the converse does not hold in general: a totally monotone function may
not have a non negative Möbius transform.

As shown in [10], most results of Dempster-Shafer theory canbe transposed
in the general lattice setting. For instance, the conjunctive sum can be extended
by replacing ∩© by ∧ in (8), and relation (9) between commonality functions is
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preserved. Similarly, we can extend the disjunctive rule (10) by substituting∨ for ∪
in (10), and relation (11) still holds.

The extension of other notions from classical Dempster-Shafer theory may re-
quire additional assumptions on(L,≤). For instance, the definition of the plausibil-
ity function pl as the dual ofb using (5) can only be extended to autodual lattices
[10].

4 Belief functions with Lattice Intervals as Focal Elements

Let Ω be a finite frame of discernment. If the cardinality ofΩ is very large, working
in the Boolean lattice(2Ω ,⊆) may become intractable. This problem can be circum-
vented by selecting aseventsonly a strict subset of 2Ω . As shown in Section 3, the
Dempster-Shafer calculus can be applied in this restrictedset of events as long as it
has a lattice structure. To be meaningful, the definition of events should be based on
some underlying structure of the frame of discernment.

When the frameΩ is linearly ordered, then a usual trick consists in assigning
non zero masses only to intervals. Here, we propose to extendand formalize this
approach, by considering the more general case whereΩ has a lattice structure for
some partial ordering≤. The set of events is then defined as the setI of lattice
intervals in(Ω ,≤). We will show that(I ,⊆) is then itself a lattice, in which the
Dempster-Shafer calculus can be applied.

This lattice(I ,⊆) of intervals of a lattice(Ω ,≤) will first be introduced more
precisely in Section 4.1. The definition of belief functionson (I ,⊆) will then be
dealt with in Section 4.2.

4.1 The Lattice(I ,⊆)

Let Ω be a finite frame of discernment, and let≤ be a partial ordering ofΩ such
that(Ω ,≤) is a lattice, with greatest element⊤ and least element⊥. A subsetI of
Ω is a (lattice) interval if there exists elementsa andb of Ω such that

I = {x∈ Ω |a≤ x≤ b}.

We then denoteI as [a,b]. Obviously,Ω is the interval[⊥,⊤] and /0 is the empty
interval represented by[a,b] for any a andb such thata ≤ b does not hold. Let
I ⊆ 2Ω be the set of intervals, including the empty set /0:

I = {[a,b]|a,b∈ Ω ,a≤ b}∪{ /0}.

The intersection of two intervals is an interval:
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[a,b]∩ [c,d] =

{
[a∨c,b∧d] if a∨c≤ b∧d,

/0 otherwise.

Consequently,I is a closure system, and(I ,⊆) is a lattice, with least element /0
and greatest elementΩ . The meet operation is the intersection, and the join opera-
tion⊔ is defined by

[a,b]⊔ [c,d] = [a∧c,b∨d]. (17)

Clearly, [a,b] ⊆ [a,b] ⊔ [c,d] and [c,d] ⊆ [a,b]⊔ [c,d], hence[a,b] ∪ [c,d] ⊆
[a,b]⊔ [c,d]. We note that(I ,⊆) is a subposet, but not a sublattice of(2Ω ,⊆),
because they do not share the same join operation.

The atoms of(I ,⊆) are the singletons ofΩ , while the co-atoms are intervals
of the form[⊥,x], wherex is a co-atom of(Ω ,≤), or [x,⊤], wherex is an atom of
(Ω ,≤). The lattice(I ,⊆) is usually neither autodual, nor Boolean.

4.2 Belief Functions on(I ,⊆)

Let m be a mass function fromI to [0,1]. Implicability, belief and commonality
functions can be defined on(I ,⊆) as explained in Section 3. Conversely,m can
be recovered fromb andq using (14) and (16), where the Möbius functionµ de-
pends on the lattice(I ,⊆). As the cardinality ofI is at most proportional toK2,
whereK is the cardinality ofΩ , all these operations, as well as the conjunctive and
disjunctive sums can be performed in polynomial time.

Given a mass functionm on (I ,⊆), we may define a functionm∗ on (2Ω ,⊆) as

m∗(A) =

{
m(A) if A∈ I ,

0 otherwise.

Let b∗ andq∗ be the implicability and commonality functions associatedto m∗. It
is obvious thatb∗(I) = b(I) andq∗(I) = q(I) for all I ∈ I . Let m1 andm2 be two
mass functions on(I ,⊆), and letm∗

1 andm∗
2 be their “images” in(2Ω ,⊆). Because

the meet operations are identical in(I ,⊆) and(2Ω ,⊆), computing the conjunctive
sum in any of these two lattices yields the same result, as we have

(m∗
1 ∩©m∗

2)(A) =

{
(m1 ∩©m2)(A) if A∈ I ,

0 otherwise.

However, computing the disjunctive sum in(2Ω ,⊆) or (I ,⊆) is not equivalent,
because the join operation in(I ,⊆), defined by (17), is not identical to the union
operation in 2Ω . Consequently, when computing the disjunctive sum ofm∗

1 andm∗
2,

the productm∗
1(A)m∗

2(B) is transferred toA∪B, whereas the productm1(A)m2(B)
is transferred toA⊔B when combiningm1 andm2. Let (m1 ∪©m2)

∗ be the image
of m1 ∪©m2 in (2Ω ,⊆). As A⊔B ⊇ A∪B, (m1 ∪©m2)

∗ is thus anouter approxima-
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tion [7, 4] of m∗
1 ∪©m∗

2. When masses are assigned to intervals of the lattice(Ω ,≤),
doing the calculations in(I ,⊆) can thus be see an approximation of the calcula-
tions in(2Ω ,⊆), with a loss of information only when a disjunctive combination is
performed.

5 Reasoning with Set-valued Variables

In this section, we present a first application of the above scheme to the represen-
tation of knowledge regarding set-valued variables. The general framework will be
presented in Section 5.1, and it will be applied to multi-label classification in Section
5.2.

5.1 Evidence on Set-valued Variables

Let Θ be a finite set, and letX be a variable taking values in the power set 2Θ . Such
a variable is said to be set-valued, orconjunctive[7, 24]. For instance, in diagnosis
problems,Θ may denote the set of faults that can possibly occur in a system, and
X the set of faults actually occurring at a given time, under the assumption that
multiple faults can occur. In text classification,Θ may be a set of topics, andX the
list of topics dealt with in a given text, etc.

Defining belief functions on the lattice(22Θ
,⊆) is practically intractable, because

of the double exponential complexity involved. However, wemay exploit the lattice
structure induced by the ordering⊆ in Ω = 2Θ , using the general approach outlined
in Section 4 [6].

For any two subsetsA andB of Θ such thatA⊆ B, the interval[A,B] is defined
as

[A,B] = {C⊆Θ |A⊆C⊆ B}.

The set of intervals of the lattice(Ω ,⊆) is thus

I = {[A,B]|A,B∈ Ω ,A⊆ B}∪ /0Ω ,

where /0Ω denotes the empty sets ofΩ (as opposed to the empty ste ofΘ ). Clearly,
I ⊆ 2Ω = 22Θ

. The interval[A,B] can be seen as the specification of an unknown
subsetC of Θ thatsurelycontains all elements ofA, andpossiblycontains elements
of B. Alternatively,C surely containsnoelement ofB.
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5.2 Multi-label Classification

In this section, we present an application of the framework developed in this paper
to multi-label classification[26, 23, 25]. In this kind of problems, each object may
belong simultaneously to several classes, contrary to standard single-label problems
where objects belong to only one class. For instance, in image retrieval, each image
may belong to several semantic classes such as “beach” or “urban”. In such prob-
lems, the learning task consists in predicting the value of the class variable for a new
instance, based on a training set. As the class variable is set-valued, the framework
developed in the previous section can be applied.

5.2.1 Training Data

In order to construct a multi-label classifier, we generallyassume the existence of
a labeled training set, composed ofn examples(xi ,Yi), wherexi is a feature vector
describing instancei, andYi is a label set for that instance, defined as a subset of
the setΘ of classes. In practice, however, gathering such high quality information is
not always feasible at a reasonable cost. In many problems, there is no ground truth
for assigning unambiguously a label set to each instance, and the opinions of one or
several experts have to be elicited. Typically, an expert will sometimes express lack
of confidence for assigning exactly one label set.

The formalism developed in this paper can easily be used to handle such situa-
tions. In the most general setting, the opinions of one or several experts regarding the
set of classes that pertain to a particular instancei may be modeled by a mass func-
tion mi in (I ,⊆). A less general, but arguably more operational option is to restrict
mi to be categorical, i.e., to have a single focal element[Ai ,Bi ], with Ai ⊆ Bi ⊆ Θ .
The setAi is then the set of classes thatcertainly applyto examplei, while Bi is
the set of classes thatpossiblyapply to that instance. The usual situation of precise
labeling is recovered in the special case whereAi = Bi .

5.2.2 Algorithm

The evidentialk nearest neighbor rule introduced in [3] can be extended to the multi-
label framework as follows. LetΦk(x) denote the set ofk nearest neighbors of a new
instance described by feature vectorx, according to some distance measured, and
xi an element of that set with label[Ai ,Bi ]. This item of evidence can be described
by the following mass function in(I ,⊆):

mi([Ai ,Bi ]) = α exp(−γd(x,xi)) ,

mi([ /0Θ ,Θ ]) = 1−α exp(−γd(x,xi)) ,

whereα andγ are two parameters such that 0< α < 1. Thesek mass functions are
then combined using the conjunctive sum.
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For decision making, the following simple and computationally efficient rule can
be used. Let̂Y be the predicted label set for instancex. To decide whether to include
each classθ ∈Θ or not, we compute the degree of beliefbel([{θ},Θ ]) that the true
label setY containsθ , and the degree of beliefbel([ /0,{θ}]) that it does not contain
θ . We then definêY as

Ŷ = {θ ∈Θ | bel([{θ},Θ ])≥ bel([ /0,{θ}])}.

5.2.3 Experiment

Theemotion dataset1, presented in [23], consist of 593 songs annotated by experts
according to the emotions they generate. There are 6 classes, and each song was
labeled as belonging to one or several classes. Each song wasalso described by 8
rhythmic features and 64 timbre features, resulting in a total of 72 features. The data
was split into a training set of 391 examples and a test set of 202 examples.

This dataset was initially constructed in such a way that each instancei is as-
signed a single set of labelsYi . To assess the performances of our approach in learn-
ing from data with imprecise labels such as postulated in Section 5.2.1 above, we
randomly simulated an imperfect labeling processby proceeding as follows.

Let yi = (yi1, . . . ,yiK ) be the vector of{−1,1}K such thatyik = 1 if θk ∈ Yi and
yik =−1 otherwise. For each instancei and each classθk, we generated a probability
of error pik from a beta distribution with parametersa = b = 0.5 , and we changed
yik to −yik with probabilitypik, resulting in a noisy label vectory′i . We then defined
intervals[Ai ,Bi ] such thatAi = {θk ∈ Θ | y′ik = 1 andpik < 0.2} andBi = {θk ∈
Θ | y′ik = 1 or pik ≥ 0.2}.

The intuition behind the above model may be described as follows. Each number
pik represents the probability that the membership of instancei to classθk will be
wrongly assessed by the expert. We assume that these numberscan be provided by
the expert as a way to describe the uncertainty of his/her assessments, which allows
us to label each instancei by a pair of sets[Ai ,Bi ].

Our method (hereafter referred to as EML-kNN) was applied both with noisy
labelsy′i and with imprecise labels(Ai ,Bi). The features were normalized so as to
have zero mean and unit variance. Parametersα andγ were fixed at 0.95 and 0.5, re-
spectively. As a reference method, we used the ML-kNN method introduced in [26],
which was shown to have good performances as compared to mostexisting multi-
label classification algorithms. The ML-kNN algorithm was applied to noisy labels
only, as it is not clear how imprecise labels could be handledusing this method.

For evaluation, we used accuracy as a performance measure, defined as:

Accuracy=
1
n

n

∑
i=1

|Yi ∩Ŷi |

|Yi ∪Ŷi |
,

1 This dataset can be downloaded fromhttp://mlkd.csd.auth.gr/multilabel.html.
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wheren is the number of test examples,Yi is the true label set for examplesi, andŶi

is the predicted label set for the same example.
Figure 1 shows the mean accuracy plus or minus one standard deviation over five

generations of noisy and imprecise labels, with the following methods: EML-kNN
with imprecise labels[Ai ,Bi ], EML-kNN with noisy labels and ML-kNN with noisy
labels. The EML-kNN method with noisy labels outperforms the ML-kNN trained
using the same data, while the EML-kNN algorithm with imprecise labels clearly
yields the best performances, which demonstrates the benefits of handling imprecise
labels using our approach.
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Fig. 1 Mean accuracy (plus or minus one standard deviation) over 5 trials as a function ofk for the
emotions dataset with the following methods: EML-kNN with imprecise labels(Ai ,Bi), EML-kNN
with noisy labels and ML-kNN with noisy labels.

6 Belief Functions on Partitions

Ensemble clustering methods [11, 9] aim at combining multiple clustering solutions
or partitions into a single one, offering a better description of the data. In this sec-
tion, we explain how to address this fusion problem using thegeneral framework
developed in this paper. Each clustering algorithm (or clusterer) can be considered
as a partially reliable source, giving an opinion about the true, unknown, partition of
the objects. This opinion provides evidence in favor of a setof possible partitions.
Moreover, we suppose that the reliability of each source is described by a confi-
dence degree, either assessed by an external agent or evaluated using a class validity
index. Manipulating beliefs defined on sets of partitions isintractable in the usual
case where the number of potential partitions is high (for example, a set composed
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of 6 elements has 203 potential partitions!) but it can be manageable using the lat-
tice structure of partitions, as it will be explained below.Note that, due to space
limitations, only the main principles will be given. More details may be found in
[13, 14].

First, basic notions about the lattice of partitions of a setare recalled in Section
6.1, then our approach is explained and illustrated in Section 6.2 using a synthetic
data set.

6.1 Lattice of Partitions

Let E denote a finite set ofn objects. A partitionp is a set of non empty, pairwise
disjoint subsetsE1,...,Ek of E, such that their union is equal toE. Every partitionp
can be associated to an equivalence relation (i.e., a reflexive, symmetric, and tran-
sitive binary relation) onE, denoted byRp, and characterized, for all(x,y) ∈ E2,
by:

Rp(x,y) =

{
1 if x andy belong to the same cluster inp,
0 otherwise.

The set of all partitions ofE, denotedΩ , can be partially ordered using the following
ordering relation: a partitionp is said to befiner than a partitionp′ on the same setE
(p� p′) if the clusters ofp can be obtained by splitting those ofp′ (or equivalently,
if each cluster ofp′ is the union of some clusters ofp). This partial ordering can be
alternatively defined using the equivalence relations associated top andp′:

p� p′ ⇔ Rp(x,y) ≤ Rp′(x,y) ∀(x,y) ∈ E2.

The setΩ endowed with the�-order has a lattice structure [15]. In this lattice,
the meetp∧ p′ of two partitionsp andp′, is defined as the coarsest partition among
all partitions finer thanp and p′. The clusters of the meetp∧ p′ are obtained by
considering pairwise intersections between clusters ofp and p′. The equivalence
relationRp∧p′ is simply obtained as the minimum ofRp andRp′ . The join p∨ p′ is
similarly defined as the finest partition among the ones that are coarser thanp andp′.
The equivalence relationRp∨p′ is given by thetransitive closureof the maximum
of Rp and Rp′ . The least element of the lattice⊥ is the finestpartition, denoted
p0 = (1/2/.../n), in which each object is a cluster. The greatest element⊤ of (Ω ,�)
is thecoarsestpartition denotedpE = (123..n), in which all objects are put in the
same cluster. In this order, each partition precedes every partition derived from it by
aggregating two of its clusters. Similarly, each partitioncovers all partitions derived
by subdividing one of its clusters in two clusters.

A closed interval ofΩ is defined as:

[p, p] = {p∈ Ω | p� p� p}. (18)
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It is a particular set of partitions, namely, the set of all partitions finer thanp and
coarser thanp.

6.2 Ensemble Clustering

6.2.1 Principle

We propose to use the following strategy for ensemble clustering:

1) Mass generation: Givenr clusterers, build a collection ofr mass functionsm1,
m2,...,mr on the lattice of intervals; the way of choosing the focal elements and
allocating the masses from the results of several clusterers depends mainly on
the applicative context and on the nature of the clusterers in the ensemble. An
example will be given in Section 6.2.2.

2) Aggregation: Combine ther mass functions into a single one using the conjunc-
tive sum. The result of this combination is a mass functionmwith focal elements
[p

k
, pk] and associated massesmk, k = 1, . . . ,s. The equivalence relations corre-

sponding top
k

andpk will be denotedRk andRk, respectively.
3) Decision making: Letpi j denote the partition with(n−1) clusters, in which the

only objects which are clustered together are objectsi and j (partition pi j is an
atom in the lattice(Ω ,�)). Then, the interval[pi j , pE] represents the set of all
partitions in which objectsi and j are put in the same cluster. Our belief in the
fact thati and j belongs to the same cluster can be characterized by the credibility
of [pi j , pE], which can be computed as follows:

Beli j = bel([pi j , pE]) = ∑
[pk,pk]⊆[pi j ,pE]

mk = ∑
pk�pi j

mk =
s

∑
k=1

mkRk(i, j). (19)

Matrix Bel = (Beli j ) can be considered as a new similarity matrix and can be
in turn clustered using, e.g., a hierarchical clustering algorithm. If a partition is
needed, the classification tree (dendogram) can be cut at a specified level so as to
insure a user-defined number of clusters.

6.2.2 Example

The data set used to illustrate the method is the half-ring data set inspired from
[8]. It consists of two clusters of 100 points each in a two-dimensional space. To
build the ensemble, we used the fuzzyc-means algorithm with a varying number of
clusters (from 6 to 11). The six hard partitions computed from the soft partitions are
represented in Figure 2.

Each hard partitionpl (l = 1,6) was characterized by a confidence degree 1−αl ,
which was computed using a validity index measuring the quality of the partition.
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Fig. 2 Half-rings data set. Individual partitions.

Considering that the true partition is coarser than each individual one, and taking
into account the uncertainty of the clustering process, thefollowing mass functions
were defined: {

ml ([pl , pE]) = 1−αl

ml (Ω) = αl .
(20)

The six mass functions (with two focal elements each) were then combined using
the conjunctive rule of combination. A tree was computed from matrix Bel using
Ward’s linkage. This tree, represented in the left part of Figure 3, indicates a clear
separation in two clusters. Cutting the tree to obtain two clusters yields the partition
represented in the right part of Figure 3. We can see that the natural structure of the
data is perfectly recovered.

7 Conclusion

The exponential complexity of operations in the theory of belief functions has long
been seen as a shortcoming of this approach, and has prevented its application to
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Fig. 3 Half-rings data set. Ward’s linkage computed fromBel and derived consensus.

very large frames of discernment. We have shown in this paperthat the complexity
of the Dempster-Shafer calculus can be drastically reducedif belief functions are
defined over a subset of the power set with a lattice structure. When the frame of
discernment forms itself a lattice for some partial ordering, the set of events may
be defined as the set of intervals in that lattice. Using this method, it is possible to
define and manipulate belief functions in very large frames such as the power set
of a finite set, or the set of partitions of a set of objects. This approach opens the
way to the application of Dempster-Shafer theory to computationally demanding
Machine Learning tasks such as multi-label classification and ensemble clustering.
Other potential applications of this framework include uncertain reasoning about
rankings.
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