Skip to main content

Choquet Integral on Locally Compact Space: A Survey

  • Chapter
Integrated Uncertainty Management and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 68))

  • 985 Accesses

Abstract

The outer regular fuzzy measure and the regular fuzzy measure are introduced. The monotone convergence theorem and the representation theorem are presented. The relation of the regular fuzzy measure and Choquet capacity are discussed. Formulas for calculation of a Choquet integral of a function on the real line are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choquet, G.: Theory of capacities. Ann. Inst. Fourier, Grenoble. 5, 131–295 (1955)

    MathSciNet  Google Scholar 

  2. Gavriluţ, A.C.: Regularity and autocontinuity of set multifunctions. Fuzzy Sets and Systems (in Press)

    Google Scholar 

  3. Denneberg, D.: Non additive measure and Integral. Kluwer Academic Publishers, Dordorecht (1994)

    MATH  Google Scholar 

  4. Dellacherie, C.: Quelques commentaires sur les prolongements de capacitĂ©s. In: SĂ©minaire de ProbabilitĂ©s 1969/1970, Strasbourg. Lecture Notes in Mathematics, vol. 191, pp. 77–81. Springer, Heidelberg (1971)

    Google Scholar 

  5. Grabisch, M., Nguyen, H.T., Walker, E.A.: Fundamentals of uncertainty calculi with applications to fuzzy inference. Kluwer Academic Publishers, Dordorecht (1995)

    Google Scholar 

  6. Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals: Theory and Applications. Springer, Berlin (2000)

    MATH  Google Scholar 

  7. Ji, A.B.: Fuzzy measure on locally compact space. The Journal of Fuzzy Mathematics 5(4), 989–995 (1997)

    MATH  Google Scholar 

  8. Kawabe, J.: Regularities of Riesz space-valued non-additive measures with applications to convergence theorems for Choquet integrals. Fuzzy Sets and Systems (in Press)

    Google Scholar 

  9. Masiha, H.P., Rahmati, M.: A symmetric conjugate condition for the representation of comonotonically additive and monotone functionals. Fuzzy Sets and Systems 159, 661–669 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Murofushi, T., Sugeno, M.: An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets and Systems 29, 201–227 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Murofushi, T., Sugeno, M.: A Theory of Fuzzy Measures: Representations, the Choquet integral and null sets. J. Math. Anal. Appl. 159, 532–549 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Narukawa, Y., Murofushi, T., Sugeno, M.: The comonotonically additive functional on the class of continuous functions with compact support. In: Proc. FUZZ-IEEE 1997, pp. 845–852 (1997)

    Google Scholar 

  13. Narukawa, Y., Murofushi, T., Sugeno, M.: Representation of Comonotonically Additive Functional by Choquet Integral. In: Proc. IPMU 1998, pp. 1569–1576 (1998)

    Google Scholar 

  14. Narukawa, Y., Murofushi, T., Sugeno, M.: Regular fuzzy measure and representation of comonotonically additive functionals. Fuzzy Sets and Systems 112, 177–186 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Narukawa, Y., Murofushi, T., Sugeno, M.: Boundedness and Symmetry of Comonotonically Additive Functionals. Fuzzy Sets and Systems 118, 539–545 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Narukawa, Y., Murofushi, T., Sugeno, M.: Extension and representation of comonotonically additive functionals. Fuzzy Sets and Systems 121, 217–226 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Narukawa, Y., Murofushi, T.: Conditions for Choquet integral representation of the comonotonically additive and monotone functional. Journal of Mathematical Analysis and Applications 282, 201–211 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Narukawa, Y., Murofushi, T.: Regular non-additive measure and Choquet integral. Fuzzy Sets and Systems 143, 487–492 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Narukawa, Y., Murofushi, T.: Choquet integral with respect to a regular non-additive measures. In: Proc. 2004 IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE 2004), pp. 517–521 (2004) (paper# 0088-1199)

    Google Scholar 

  20. Narukawa, Y.: Inner and outer representation by Choquet integral. Fuzzy Sets and Systems 158, 963–972 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pap, E.: Regular null additive monotone set functions. Univ. u Novom Sadu Zb. rad. Prorod.-Mat. Fak. Ser. mat. 25(2), 93–101 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordorechet (1995)

    MATH  Google Scholar 

  23. Pap, E., Mihailovic, B.P.: A representation of a comonotone–additive and monotone functional by two Sugeno integrals. Fuzzy Sets and Systems 155, 77–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Song, J., Li, J.: Regularity of null additive fuzzy measure on metric spaces. International Journal of General Systems 32(3), 271–279 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rebille, Y.: Sequentially continuous non-monotonic Choquet integrals. Fuzzy Sets and Systems 153, 79–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rebille, Y.: A Yosida-Hewitt decomposition for totally monotone set functions on locally compact σ− compact topological spaces. International Journal of Approximate Reasoning 48, 676–685 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Å ipoÅ¡, J.: Non linear integral. Math. Slovaca 29(3), 257–270 (1979)

    MATH  MathSciNet  Google Scholar 

  28. Sugeno, M.: Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  29. Sugeno, M., Narukawa, Y., Murofushi, T.: Choquet integral and fuzzy measures on locally compact space. Fuzzy sets and Systems 99(2), 205–211 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Torra, V., Narukawa, Y.: Modeling decisions: Information fusion and aggregation operators. Springer, Berlin (2006)

    Google Scholar 

  31. Wu, J., Wu, C.: Fuzzy regular measures on topological spaces. Fuzzy sets and Systems 119, 529–533 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. on Systems, Man and Cybernetics 18, 183–190 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Narukawa, Y., Torra, V. (2010). Choquet Integral on Locally Compact Space: A Survey. In: Huynh, VN., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11960-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11960-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11959-0

  • Online ISBN: 978-3-642-11960-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics