Skip to main content

An MDL Approach to Efficiently Discover Communities in Bipartite Network

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5981))

Included in the following conference series:

Abstract

Bipartite network is a branch of complex network. It is widely used in many applications such as social network analysis, collaborative filtering and information retrieval. Partitioning a bipartite network into smaller modules helps to get insight of the structure of the bipartite network. The main contributions of this paper include: (1) proposing an MDL 21 criterion for identifying a good partition of a bipartite network. (2) presenting a greedy algorithm based on combination theory, named as MDL-greedy, to approach the optimal partition of a bipartite network. The greedy algorithm automatically searches for the number of partitions, and requires no user intervention. (3) conducting experiments on synthetic datasets and the southern women dataset. The results show that our method generates higher quality results than the state-of-art methods Cross-Association and Information-theoretic co-clustering. Experiment results also show the good scalability of the proposed algorithm. The highest improvement could be up to about 14% for the precision, 40% for the ratio and 70% for the running time.

This work was supported by NSFC Grant Number: 60773169 and 11-th Five Years Key Programs for Sci. &Tech. Development of China under grant No. 2006BAI05A01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Guimerà, R., Amaral, L.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  3. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech. P09008 (2005)

    Google Scholar 

  4. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Physical Review E 69, 026113 (2004)

    Article  Google Scholar 

  5. Linden, G., Smith, B., York, J.: Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7, 76–80 (2003)

    Article  Google Scholar 

  6. Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103, 8577–8582 (2006)

    Article  Google Scholar 

  7. Pujol, J., Béjar, J., Delgado, J.: Clustering algorithm for determining community structure in large networks. Physical Review E 74, 9 (2006)

    Article  Google Scholar 

  8. Fortunato, S., Barthelemy, M.: Resolution Limit in Community Detection. Proceedings of the National Academy of Sciences 104, 36–41 (2007)

    Article  Google Scholar 

  9. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 104, 7327–7331 (2007)

    Article  Google Scholar 

  10. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008)

    Article  Google Scholar 

  11. Barron, A., Rissanen, J., Yu, B.: The minimum description principle in coding and modeling. IEEE Transactions on Information Theory 44, 2743–2760 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  13. Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.: Fully automatic cross-associations. In: Proc. Tenth ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 79–88 (2004)

    Google Scholar 

  14. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: KDD (2003)

    Google Scholar 

  15. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM TCBB 1, 24–45 (2004)

    Google Scholar 

  16. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB (2000)

    Google Scholar 

  17. Guimerà, R., Sales-Pardo, M., Lan, A.: Module identification in bipartite and directed networks. Physical Review E 76 (2007)

    Google Scholar 

  18. Barber, M.J.: Modularity and community detection in bipartite network. Physical Review E 76 (2007)

    Google Scholar 

  19. Lehmann, S., Schwartz, M., Hansen, L.K.: Biclique communities. Phys. Rev. E 78, 016108 (2008)

    Article  MathSciNet  Google Scholar 

  20. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.: GraphScope: Parameter-free mining of large time-evolving graphs. In: KDD (2007)

    Google Scholar 

  21. Papadimitriou, S., Sun, J., Faloutsos, C., Yu, P.: Hierarchical, parameter-free community discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 170–187. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company (1997)

    Google Scholar 

  23. Ashlock, D.: Evolutionary computation for modeling and optimization. Springer, New York (2005)

    Google Scholar 

  24. Xu, K.K., Liu, Y.T., Tang, R.e.a.: A novel method for real parameter optimization based on Gene Expression Programming. Applies Soft Computing 9, 725–737 (2009)

    Article  Google Scholar 

  25. Rosen, K.H.: Discrete mathematics and its applications, 4th edn. WCB/McGraw-Hill, Boston (1999)

    Google Scholar 

  26. Girvan, M., Neuman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Davis, A., Gardner, B.B., Gardner, M.R.: Deep South. University of Chicago Press, Chicago (1941)

    Google Scholar 

  28. Freeman, L.: Dynamic Social Network Modeling and Analysis. The National Academies Press, Washington (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, K., Tang, C., Li, C., Jiang, Y., Tang, R. (2010). An MDL Approach to Efficiently Discover Communities in Bipartite Network. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds) Database Systems for Advanced Applications. DASFAA 2010. Lecture Notes in Computer Science, vol 5981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12026-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12026-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12025-1

  • Online ISBN: 978-3-642-12026-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics