Skip to main content

An Information Theoretic Web Site Navigability Classification

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5991))

Included in the following conference series:

Abstract

Usability is critical to the success of a web sit and good navigability enhances the usability. Hence the navigability is the most important issue in web sit design. Many navigability measures have been proposed with different aspects. Applying information theory, we propose a simple Markov model to represent the structure of a web site and use the users’ log data to classify types of web pages in the model. Based on the web page classification, page navigability can be improved. The experimental results show that our model can provide effective measure and right classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lappas, G.: An Overview of Web Mining in Societal Benefit Areas. In: Proc. 9th IEEE International Conference on E-Commerce Technology, pp. 683–690 (2007)

    Google Scholar 

  2. McGovern, G.: Part 1: Navigation, Design, and Principles. Web Content Style Guide. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  3. Leven, M., Loizou, G.: Computing the Entropy of User Navigation in the Web. International J. Information Technology and Decision Making 2(3), 459–479 (2003)

    Article  Google Scholar 

  4. Borges, J., Leven, M.: An Average Linear Time Algorithm foe Web Usage Mining. International J. Information Technology and Decision Making 3(2), 307–319 (2004)

    Article  Google Scholar 

  5. Botafogo, R., Rivlin, E., Shneiderman, B.: Structural Analysis of Hypertexts: Identifying Hierarchies and Useful Metrics. ACM Trans. Information Systems 10(2), 142–180 (1992)

    Article  Google Scholar 

  6. De Bra, P., Houben, G.J.: Hypertext Metrics Revisited: Navigational Metrics for Static and Adaptive Link Structures (2005), http://wwwis.win.tue.nl/~houben/pub/measures.ps.Z

  7. Yamada, S., Hong, J., Sugita, S.: Development and Evaluation of Hypermedia for Museum Education: Validation of Metrics. ACM Trans. Computer-Human Interaction 2(4), 284–307 (1995)

    Article  Google Scholar 

  8. Zhang, Y., Greenwood, S.: Website Complexity Metrics for Measuring Navigability. In: Proc. Fourth Int’l Conf. Quality Software, pp. 172–179 (2004)

    Google Scholar 

  9. Pascual-Cid, V.: An Information Visualisation System for the Understanding of Web Data. In: Proc. IEEE Symposium on Visual Analytics Science and Technology, pp. 183–184 (2008)

    Google Scholar 

  10. Zhou, Y., Leung, H.: MNav: A Markov Model-Based Web Site Navigability Measure. IEEE Trans. Software Engineering 33(12), 869–890 (2007)

    Article  Google Scholar 

  11. Haveliwala, T.: Topic-Sensitive Pagerank: A Context-Sensitive Ranking Algorithm for Web Search. IEEE Trans. Knowledge and Data Eng. 15(4), 784–796 (2003)

    Article  Google Scholar 

  12. Diligenti, M., Gori, M., Maggini, M.: A Unified Probabilistic Framework for Web Page Scoring Systems. IEEE Trans. Knowledge and Data Eng. 16(1), 4–16 (2004)

    Article  MathSciNet  Google Scholar 

  13. Dhawan, S., Kumar, R.: Analyzing Performance of Web-based Metrics for Evaluating Reliability and Maintainability of Hypermedia Applications. In: Proc. Third International Conference on Broadband Communications, Information Technology & Biomedical Applications, pp. 376–383 (2008)

    Google Scholar 

  14. Larson, K., Czerwinski, M.: Web Page Design: Implications of Memory, Structure and Scent for Information Retrieval. In: Proc. 16th ACM Conf. Human Factors in Computing Systems, pp. 18–23 (1998)

    Google Scholar 

  15. McDonald, S., Stevenson, R.: Effects of Text Structure and Prior Knowledge of the Learner on Navigation in Hypertext. Human Factors 40(1), 18–27 (1998)

    Article  Google Scholar 

  16. Shannon, C.E.: A Mathematical Theory of Communication. Bell Systems Technology J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  17. Abramson, N.: Information Theory and Coding. McGraw-Hill, New York (1963)

    Google Scholar 

  18. National Taipei University of Education, http://www.ntue.edu.tw

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, CT., Lo, CC., Tseng, CH., Chang, JM. (2010). An Information Theoretic Web Site Navigability Classification. In: Nguyen, N.T., Le, M.T., ĹšwiÄ…tek, J. (eds) Intelligent Information and Database Systems. ACIIDS 2010. Lecture Notes in Computer Science(), vol 5991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12101-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12101-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12100-5

  • Online ISBN: 978-3-642-12101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics