Abstract
Usability is critical to the success of a web sit and good navigability enhances the usability. Hence the navigability is the most important issue in web sit design. Many navigability measures have been proposed with different aspects. Applying information theory, we propose a simple Markov model to represent the structure of a web site and use the users’ log data to classify types of web pages in the model. Based on the web page classification, page navigability can be improved. The experimental results show that our model can provide effective measure and right classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lappas, G.: An Overview of Web Mining in Societal Benefit Areas. In: Proc. 9th IEEE International Conference on E-Commerce Technology, pp. 683–690 (2007)
McGovern, G.: Part 1: Navigation, Design, and Principles. Web Content Style Guide. Prentice Hall, Englewood Cliffs (2001)
Leven, M., Loizou, G.: Computing the Entropy of User Navigation in the Web. International J. Information Technology and Decision Making 2(3), 459–479 (2003)
Borges, J., Leven, M.: An Average Linear Time Algorithm foe Web Usage Mining. International J. Information Technology and Decision Making 3(2), 307–319 (2004)
Botafogo, R., Rivlin, E., Shneiderman, B.: Structural Analysis of Hypertexts: Identifying Hierarchies and Useful Metrics. ACM Trans. Information Systems 10(2), 142–180 (1992)
De Bra, P., Houben, G.J.: Hypertext Metrics Revisited: Navigational Metrics for Static and Adaptive Link Structures (2005), http://wwwis.win.tue.nl/~houben/pub/measures.ps.Z
Yamada, S., Hong, J., Sugita, S.: Development and Evaluation of Hypermedia for Museum Education: Validation of Metrics. ACM Trans. Computer-Human Interaction 2(4), 284–307 (1995)
Zhang, Y., Greenwood, S.: Website Complexity Metrics for Measuring Navigability. In: Proc. Fourth Int’l Conf. Quality Software, pp. 172–179 (2004)
Pascual-Cid, V.: An Information Visualisation System for the Understanding of Web Data. In: Proc. IEEE Symposium on Visual Analytics Science and Technology, pp. 183–184 (2008)
Zhou, Y., Leung, H.: MNav: A Markov Model-Based Web Site Navigability Measure. IEEE Trans. Software Engineering 33(12), 869–890 (2007)
Haveliwala, T.: Topic-Sensitive Pagerank: A Context-Sensitive Ranking Algorithm for Web Search. IEEE Trans. Knowledge and Data Eng. 15(4), 784–796 (2003)
Diligenti, M., Gori, M., Maggini, M.: A Unified Probabilistic Framework for Web Page Scoring Systems. IEEE Trans. Knowledge and Data Eng. 16(1), 4–16 (2004)
Dhawan, S., Kumar, R.: Analyzing Performance of Web-based Metrics for Evaluating Reliability and Maintainability of Hypermedia Applications. In: Proc. Third International Conference on Broadband Communications, Information Technology & Biomedical Applications, pp. 376–383 (2008)
Larson, K., Czerwinski, M.: Web Page Design: Implications of Memory, Structure and Scent for Information Retrieval. In: Proc. 16th ACM Conf. Human Factors in Computing Systems, pp. 18–23 (1998)
McDonald, S., Stevenson, R.: Effects of Text Structure and Prior Knowledge of the Learner on Navigation in Hypertext. Human Factors 40(1), 18–27 (1998)
Shannon, C.E.: A Mathematical Theory of Communication. Bell Systems Technology J. 27, 379–423, 623–656 (1948)
Abramson, N.: Information Theory and Coding. McGraw-Hill, New York (1963)
National Taipei University of Education, http://www.ntue.edu.tw
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, CT., Lo, CC., Tseng, CH., Chang, JM. (2010). An Information Theoretic Web Site Navigability Classification. In: Nguyen, N.T., Le, M.T., ĹšwiÄ…tek, J. (eds) Intelligent Information and Database Systems. ACIIDS 2010. Lecture Notes in Computer Science(), vol 5991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12101-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-12101-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12100-5
Online ISBN: 978-3-642-12101-2
eBook Packages: Computer ScienceComputer Science (R0)