Skip to main content

SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning

  • Conference paper
Multiple Classifier Systems (MCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5997))

Included in the following conference series:

Abstract

Pattern recognition techniques are often used in environments (called adversarial environments) where adversaries can consciously act to limit or prevent accurate recognition performance. This can be obtained, for example, by changing labels of training data in a malicious way.

While Multiple Classifier Systems (MCS) are currently used in several security applications, like intrusion detection in computer networks and spam filtering, there are very few MCS proposals that explicitly address the problem of learning in adversarial environments. In this paper we propose a general algorithm based on a multiple classifier approach to find out and clean mislabeled training samples. We will report several experiments to verify the robustness of the proposed approach to the presence of possible mislabeled samples. In particular, we will show that the performance obtained with a simple classifier trained on the training set “cleaned” by our algorithm is comparable and even better than those obtained by some state-of-the-art MCS trained on the original datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abad, C., Bonilla, R.: An analysis on the schemes for detecting and preventing ARP cache poisoning attacks. In: ICDCS Workshops, p. 60. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  2. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be secure? In: Lin, F.-C., Lee, D.-T., Lin, B.-S., Shieh, S., Jajodia, S. (eds.) ASIACCS, pp. 16–25. ACM, New York (2006)

    Chapter  Google Scholar 

  3. Biggio, B., Fumera, G., Pillai, I., Roli, F.: Image spam filtering using visual information. In: Proc. of the 14th International Conf. on Image Analysis and Processing (ICIAP), pp. 105–110 (2007)

    Google Scholar 

  4. Biggio, B., Fumera, G., Roli, F.: Adversarial pattern classification using multiple classifiers and randomisation. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T.-Y., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSSPR 2008. LNCS, vol. 5342, pp. 500–509. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Biggio, B., Fumera, G., Roli, F.: Multiple classifier systems for adversarial classification tasks. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 132–141. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Corona, I., Giacinto, G., Mazzariello, C., Roli, F., Sansone, C.: Information fusion for computer security: State of the art and open issues. Information Fusion 10(4), 274–284 (2009)

    Article  Google Scholar 

  7. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. 13th International Conference on Machine Learning, pp. 146–148. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  9. Fumera, G., Pillai, I., Roli, F.: Spam filtering based on the analysis of text information embedded into images. Journal of Machine Learning Research 6, 2699–2720 (2006)

    Google Scholar 

  10. Gargiulo, F., Kuncheva, L.I., Sansone, C.: Network protocol verification by a classifier selection ensemble. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 314–323. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Gargiulo, F., Penta, A., Picariello, A., Sansone, C.: A personal antispam system based on a behaviour-knowledge space approach. In: Okun, O., Valentini, G. (eds.) Applications of Supervised and Unsupervised Ensemble Methods. Studies in Computational Intelligence, vol. 245, pp. 39–57. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)

    Google Scholar 

  13. Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: Brodley, C.E. (ed.) ICML. ACM International Conference Proceeding Series, vol. 69. ACM, New York (2004)

    Google Scholar 

  14. Oza, N.C.: Aveboost2: Boosting for noisy data. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 31–40. Springer, Heidelberg (2004)

    Google Scholar 

  15. Smets, P., Magrez, P.: The measure of the degree of truth and the grade of membership. Fuzzy Sets Syst. 25(1), 67–72 (1988)

    Article  MathSciNet  Google Scholar 

  16. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)

    Article  Google Scholar 

  17. Thiel, C.: Classification on soft labels is robust against label noise. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 65–73. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gargiulo, F., Sansone, C. (2010). SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning. In: El Gayar, N., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2010. Lecture Notes in Computer Science, vol 5997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12127-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12127-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12126-5

  • Online ISBN: 978-3-642-12127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics