Abstract
Pattern recognition techniques are often used in environments (called adversarial environments) where adversaries can consciously act to limit or prevent accurate recognition performance. This can be obtained, for example, by changing labels of training data in a malicious way.
While Multiple Classifier Systems (MCS) are currently used in several security applications, like intrusion detection in computer networks and spam filtering, there are very few MCS proposals that explicitly address the problem of learning in adversarial environments. In this paper we propose a general algorithm based on a multiple classifier approach to find out and clean mislabeled training samples. We will report several experiments to verify the robustness of the proposed approach to the presence of possible mislabeled samples. In particular, we will show that the performance obtained with a simple classifier trained on the training set “cleaned” by our algorithm is comparable and even better than those obtained by some state-of-the-art MCS trained on the original datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abad, C., Bonilla, R.: An analysis on the schemes for detecting and preventing ARP cache poisoning attacks. In: ICDCS Workshops, p. 60. IEEE Computer Society, Los Alamitos (2007)
Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be secure? In: Lin, F.-C., Lee, D.-T., Lin, B.-S., Shieh, S., Jajodia, S. (eds.) ASIACCS, pp. 16–25. ACM, New York (2006)
Biggio, B., Fumera, G., Pillai, I., Roli, F.: Image spam filtering using visual information. In: Proc. of the 14th International Conf. on Image Analysis and Processing (ICIAP), pp. 105–110 (2007)
Biggio, B., Fumera, G., Roli, F.: Adversarial pattern classification using multiple classifiers and randomisation. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T.-Y., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSSPR 2008. LNCS, vol. 5342, pp. 500–509. Springer, Heidelberg (2008)
Biggio, B., Fumera, G., Roli, F.: Multiple classifier systems for adversarial classification tasks. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 132–141. Springer, Heidelberg (2009)
Corona, I., Giacinto, G., Mazzariello, C., Roli, F., Sansone, C.: Information fusion for computer security: State of the art and open issues. Information Fusion 10(4), 274–284 (2009)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. 13th International Conference on Machine Learning, pp. 146–148. Morgan Kaufmann, San Francisco (1996)
Fumera, G., Pillai, I., Roli, F.: Spam filtering based on the analysis of text information embedded into images. Journal of Machine Learning Research 6, 2699–2720 (2006)
Gargiulo, F., Kuncheva, L.I., Sansone, C.: Network protocol verification by a classifier selection ensemble. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 314–323. Springer, Heidelberg (2009)
Gargiulo, F., Penta, A., Picariello, A., Sansone, C.: A personal antispam system based on a behaviour-knowledge space approach. In: Okun, O., Valentini, G. (eds.) Applications of Supervised and Unsupervised Ensemble Methods. Studies in Computational Intelligence, vol. 245, pp. 39–57. Springer, Heidelberg (2009)
Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)
Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: Brodley, C.E. (ed.) ICML. ACM International Conference Proceeding Series, vol. 69. ACM, New York (2004)
Oza, N.C.: Aveboost2: Boosting for noisy data. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 31–40. Springer, Heidelberg (2004)
Smets, P., Magrez, P.: The measure of the degree of truth and the grade of membership. Fuzzy Sets Syst. 25(1), 67–72 (1988)
Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
Thiel, C.: Classification on soft labels is robust against label noise. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 65–73. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gargiulo, F., Sansone, C. (2010). SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning. In: El Gayar, N., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2010. Lecture Notes in Computer Science, vol 5997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12127-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-12127-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12126-5
Online ISBN: 978-3-642-12127-2
eBook Packages: Computer ScienceComputer Science (R0)