Skip to main content

An FPGA Accelerator for Hash Tree Generation in the Merkle Signature Scheme

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5992))

Included in the following conference series:

Abstract

Merkle Signature Scheme relies on secure hash functions and is, therefore, assumed to be resistant to attacks by quantum computers. The generation of the Merkle public key, however, is highly time-consuming because of the huge number of hash operations required to set up a complete hash tree. Fortunately, setting up such trees features inherent parallelism, which may be utilized for accelerating this process using a specific hardware platform. This paper presents a flexible and efficient hardware architecture on an FPGA platform to accelerate the generation of Merkle hash trees. Timing measurements on a prototype with different parameters show a considerable performance boost compared to a similar software solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21 (1978)

    Google Scholar 

  2. Koblitz, N.: Elleptic Curve Cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. McIvor, C., McLoone, M., McCanny, J.: Hardware Elliptic Curve Cryptographic Processor Over rm GF(p). TCAS 53(9), 1946–1957 (2006)

    MathSciNet  Google Scholar 

  4. Hani, M., Lin, T., Shaikh-Husin, N.: FPGA implementation of RSA public-key cryptographic coprocessor. TENCON, 6–11 (2000)

    Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundation of Computer Science (1994)

    Google Scholar 

  6. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

    Google Scholar 

  7. McEliece, R.J.: A Public Key Cryptosystem Based on Algebraic Coding Theory. DSN Progress Report 42-44, 114–116 (1978)

    Google Scholar 

  8. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math., 515–534 (1982)

    Google Scholar 

  9. Fell, H., Diffie, W.: Analysis of a public key approach based on polynomial substitution. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 340–349. Springer, Heidelberg (1986)

    Google Scholar 

  10. Shoufan, A., Wink, T., Molter, G., Huss, S., Strenzke, F.: A Novel Processor Architecture for McEliece Cryptosystem and FPGA Platforms. In: 20th IEEE International Conference on Application-specific Systems, Architectures and Processors, ASAP 2009 (2009)

    Google Scholar 

  11. Beuchat, J.C., Sendrier, N., Tisserand, A., Villard, G.: FPGA Implementation of a recently published signature scheme. Rapport de recherche RR LIP 2004-14 (2004)

    Google Scholar 

  12. Balasubramanian, S., et al.: Fast Multivariate Signature Generation in Hardware: The Case of Rainbow. In: 19th IEEE Int. Conf. on Application-specific Systems, Architectures and Processors, ASAP 2008 (2008)

    Google Scholar 

  13. El-Hadedy, M., Gligoroski, D., Knapskog, S.J.: High Performance Implementation of a Public Key Block Cipher - MQQ, for FPGA Platforms. In: International Conference on ReConFigurable Computing and FPGAs, ReConFig 2008 (2008)

    Google Scholar 

  14. Lamport, L.: Constructing digital signatures from a one-way function. SRI International (1979)

    Google Scholar 

  15. Buchmann, J., García, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. NIST: Digital signature standard (dss), fips pub 186-2 (2007), http://csrc.nist.gov/publications/fips/

  17. NIST: Secure hash standard (shs), fips pub 186-3 (2008), http://csrc.nist.gov/publications/fips/

  18. Alpha-Data, http://www.alpha-data.com

  19. The FlexiProvider group at Technische Universität Darmstadt: Flexiprovider, an open source java cryptographic service provider, http://www.flexiprovider.de/ (2001-2009)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shoufan, A. (2010). An FPGA Accelerator for Hash Tree Generation in the Merkle Signature Scheme. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2010. Lecture Notes in Computer Science, vol 5992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12133-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12133-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12132-6

  • Online ISBN: 978-3-642-12133-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics