Abstract
We present a comparative study of seven evolutionary algorithms (Generational Genetic, Elitist Genetic, Steady State Genetic, (μ/ρ, λ) Evolution Strategy, (μ/ρ + λ) Evolution Strategy, generational and elitist Covariance Matrix Adaptation) for automatic calibration of a constrained cellular automaton (CCA), whose performance are assessed in terms of two fitness metrics (based on Kappa statistics and Lee-Salee Index). Two variations of the CCA (one with 14 and one 27 parameters) were tested jointly with different number of time steps targeted by the calibration procedures. Besides offering some methodological suggestions for this kind of comparative analysis, the findings provide useful hints on the calibration algorithms to be expected to perform better in the application of cellular automata of sort for the simulation of land-use dynamics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clarke, K., Hoppen, S., Gaydos, L.: A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Env. Plan. B 24, 247–261 (1997)
Project Gigalopolis, NCGIA (2003), http://www.ncgia.ucsb.edu/projects/gig/
Straatman, B., White, R., Engelen, G.: Towards an automatic calibration procedure for constrained cellular automata. Computers, Environment and Urban Systems 28, 149–170 (2004)
Engelen, G., White, R.: Validating and Calibrating Integrated Cellular Automata Based Models of Land Use Change. In: The Dynamics of Complex Urban Systems: an Interdisciplinary Approach, pp. 185–211. Springer, Heidelberg (2007)
Spataro, W., D’Ambrosio, D., Rongo, R., Trunfio, G.A.: An evolutionary approach for modelling lava flows through cellular automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 725–734. Springer, Heidelberg (2004)
Goldstein, N.C.: Brains vs. brawn comparative strategies for the calibration of a cellular automata based urban growth model. In: Proceedings of the 7th International Conference on GeoComputation (2003)
Trunfio, G.A.: Exploiting Spatio-temporal Data for the Multiobjective Optimization of Cellular Automata Models. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 81–89. Springer, Heidelberg (2006)
Avolio, M.V., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Rongo, R., Spataro, W., Trunfio, G.A.: Evaluating Cellular Automata Models by Evolutionary Multiobjective Calibration. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 114–119. Springer, Heidelberg (2008)
Shan, J., Alkheder, S., Wang, J.: Genetic Algorithms for the Calibration of Cellular Automata Urban Growth Modeling. Photogram. Eng. Rem. Sens. 74(10), 1267–1277 (2008)
White, R., Engelen, G., Uljee, I.: The use of constrained cellular automata for high-resolution modelling of urban land use dynamics. Env. Plan. B 24, 323–343 (1997)
White, R., Engelen, G.: High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comp., Env. and Urb. Sys. 24, 383–400 (2000)
Hagen-Zanker, A., Martens, P.: Map Comparison Methods for Comprehensive Assessment of Geosimulation Models. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 194–209. Springer, Heidelberg (2008)
Blecic, I., Cecchini, A., Trunfio, G.A.: A General-Purpose Geosimulation Infrastructure for Spatial Decision Support. Trans. on Comput. Sci. VI, LNCS 5730, 200–218 (2009)
Pareto, V.: Cours d’Economie Politique, vol. I, II. F. Rouge, Lausanne (1896)
Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction. Natural Comput. 1(1), 3–52 (2002)
Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading (1989)
Bäck, T., Hammel, U., Schwefel, H.-P.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comp. 1(1), 3–17 (1997)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comp. 9(2), 159–195 (2001)
Igel, C., Heidrich-Meisner, V., Glasmachers, T., Shark: J. Mach. Learn. Res. 9, 993–996 (2008)
Cohen, J.: A coefficient of agreement for nominal scales. Educat. Psychol. Meas. 20(1), 37–46 (1960)
Hagen, A.: Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17(3), 235–249 (2003)
Hagen-Zanker, A.: An improved Fuzzy Kappa statistic that accounts for spatial autocorrelation. Int. J. Geogr. Inf. Sci. 23(1), 61–73 (2009)
Lee, D., Sallee, G.: A method of measuring shape. Geographical Review 60, 555–563 (1970)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blecic, I., Cecchini, A., Trunfio, G.A. (2010). A Comparison of Evolutionary Algorithms for Automatic Calibration of Constrained Cellular Automata. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12156-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-12156-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12155-5
Online ISBN: 978-3-642-12156-2
eBook Packages: Computer ScienceComputer Science (R0)