Skip to main content

A Larger Lower Bound on the OBDD Complexity of the Most Significant Bit of Multiplication

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

Ordered binary decision diagrams (OBDDs) are one of the most common dynamic data structures for Boolean functions. The reachability problem, i.e., computing the set of nodes reachable from a predefined vertex s ∈ V in a digraph G = (V,E), is an important problem in computer-aided design, hardware verification, and model checking. Sawitzki (2006) has presented exponential lower bounds on the space complexity of a restricted class of symbolic OBDD-based algorithms for the reachability problem. Here, these lower bounds are improved by presenting a larger lower bound on the OBDD complexity of the most significant bit of integer multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollig, B.: On the OBDD complexity of the most significant bit of integer multiplication. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 306–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bollig, B.: Larger lower bounds on the OBDD complexity of integer multiplication. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 212–223. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bollig, B., Klump, J.: New results on the most significant bit of integer multiplication. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 129–140. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  5. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. on Computers 40, 205–213 (1991)

    Article  Google Scholar 

  6. Burch, J.R., Clarke, E.M., Long, D.E., Mc Millan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. In: Proc. of Symposium on Logic in Computer Science, pp. 428–439 (1990)

    Google Scholar 

  7. Coudert, O., Berthet, C., Madre, J.C.: Verification of synchronous sequential machines based on symbolic execution. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 365–373. Springer, Heidelberg (1989)

    Google Scholar 

  8. De, A., Kurur, P., Saha, C., Sapthariski, R.: Fast integer multiplication using modular arithmetic. In: Proc. of 40th STOC, pp. 499–506 (2008)

    Google Scholar 

  9. Fürer, M.: Faster integer multiplication. In: Proc. of 39th STOC, pp. 57–66 (2007)

    Google Scholar 

  10. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: Proc. of SODA, pp. 573–582. ACM Press, New York (2003)

    Google Scholar 

  11. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: linear solutions to connectivity related problems. Algorithmica 50, 120–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0 − 1 networks. Formal Methods in System Design 10, 207–219 (1997)

    Article  Google Scholar 

  13. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded depth. In: Proc. 28th FOCS, pp. 99–110 (1987)

    Google Scholar 

  14. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  15. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004)

    Google Scholar 

  17. Sawitzki, D.: Exponential lower bounds on the space complexity of OBDD-based graph algorithms. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 781–792. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Schönhage, A.: and Strassen, V, Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  19. Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)

    Google Scholar 

  20. Woelfel, P.: New bounds on the OBDD-size of integer multiplication via universal hashing. Journal of Computer and System Science 71(4), 520–534 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Woelfel, P.: Symbolic topological sorting with OBDDs. Journal of Discrete Algorithms 4(1), 51–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bollig, B. (2010). A Larger Lower Bound on the OBDD Complexity of the Most Significant Bit of Multiplication. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics