Skip to main content

Time Complexity of Distributed Topological Self-stabilization: The Case of Graph Linearization

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

Topological self-stabilization is an important concept to build robust open distributed systems (such as peer-to-peer systems) where nodes can organize themselves into meaningful network topologies. The goal is to devise distributed algorithms that converge quickly to such a desirable topology, independently of the initial network state. This paper proposes a new model to study the parallel convergence time. Our model sheds light on the achievable parallelism by avoiding bottlenecks of existing models that can yield a distorted picture. As a case study, we consider local graph linearization—i.e., how to build a sorted list of the nodes of a connected graph in a distributed and self-stabilizing manner. We propose two variants of a simple algorithm, and provide an extensive formal analysis of their worst-case and best-case parallel time complexities, as well as their performance under a greedy selection of the actions to be executed.

For a complete technical report, we refer the reader to [8]. Research supported by the DFG project SCHE 1592/1-1, and NSF Award number CCF-0830704.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspnes, J., Shah, G.: Skip graphs. In: Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 384–393 (2003)

    Google Scholar 

  2. Blumofe, R.D., Leiserson, C.E.: Space-e cient scheduling of multithreaded computations. SIAM Journal on Computing 27(1), 202–229 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. Journal of the ACM 46(5), 720–748 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 124–140. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Cramer, C., Fuhrmann, T.: Self-stabilizing ring networks on connected graphs. Technical Report 2005-5, System Architecture Group, University of Karlsruhe (2005)

    Google Scholar 

  6. Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and byzantine-tolerant overlay network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 343–357. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. Distributed Computing 20(5), 375–388 (2008)

    Article  Google Scholar 

  8. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Modeling scalability in distributed self-stabilization: The case of graph linearization. Technical Report TUM-I0835, Technische Universität München, Computer Science Dept. (November 2008)

    Google Scholar 

  9. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: Proc. ACM Symp. on Principles of Distributed Computing, PODC (2009)

    Google Scholar 

  10. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabilizing and local delaunay graph construction. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Kuhn, F., Schmid, S., Wattenhofer, R.: A self-repairing peer-to-peer system resilient to dynamic adversarial churn. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 13–23. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Onus, M., Richa, A., Scheideler, C.: Linearization: Locally self-stabilizing sorting in graphs. In: Proc. 9th Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, Philadelphia (2007)

    Google Scholar 

  13. Scheideler, C., Schmid, S.: A distributed and oblivious heap. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 571–582. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In: Proc. 5th IEEE International Conference on Peer-to-Peer Computing, pp. 39–46 (2005)

    Google Scholar 

  15. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. Technical Report MIT-LCS-TR-819. MIT (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H. (2010). Time Complexity of Distributed Topological Self-stabilization: The Case of Graph Linearization. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics