Skip to main content

Randomised Broadcasting: Memory vs. Randomness

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

  • 1068 Accesses

Abstract

In this paper we analyse broadcasting in d-regular networks with good expansion properties. For the underlying communication, we consider modifications of the so called random phone call model. In the standard version of this model, each node is allowed in every step to open a channel to a randomly chosen neighbour, and the channels can be used for bi-directional communication. Then, broadcasting on the graphs mentioned above can be performed in time O(logn), where n is the size of the network. However, every broadcast algorithm with runtime O(logn) needs in average Ω(logn/logd) message transmissions per node. This lower bound even holds for random d-regular graphs, and implies a high amount of message transmissions especially if d is relatively small.

In this paper we show that it is possible to save significantly on communications if the standard model is modified such that nodes can avoid opening channels to the same neighbours in consecutive steps. We consider the so called Rr model where we assume that every node has a cyclic list of all of its neighbours, ordered in a random way. Then, in step i the node communicates with the i-th neighbour from that list. We provide an O(logn) time algorithm which produces in average \(O(\sqrt{\log n})\) transmissions per node in networks with good expansion properties. Furthermore, we present a related lower bound of \(\Omega(\sqrt{\log n/\log\log n})\) for the average number of message transmissions. These results show that by using memory it is possible to reduce the number of transmissions per node by almost a quadratic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient Randomised Broadcasting in Random Regular Networks with Applications in Peer-to-Peer Systems. In: Proc. of PODC 2008, pp. 155–164 (2008)

    Google Scholar 

  2. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized Gossip Algorithms. IEEE Transactions on Information Theory and IEEE/ACM Transactions on Networking 52, 2508–2530 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics 23, 493–507 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1985)

    Google Scholar 

  5. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proc. of PODC 1987, pp. 1–12 (1987)

    Google Scholar 

  6. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom Rumor Spreading. In: Proc. of SODA 2008, pp. 773–781 (2008)

    Google Scholar 

  7. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders, push vs. pull, and robustness. In: Proc. of ICALP 2009, track A, pp. 366–377 (2009)

    Google Scholar 

  8. Elsässer, R.: On the communication complexity of randomized broadcasting in random-like graphs. In: Proc. of SPAA 2006, pp. 148–157 (2006)

    Google Scholar 

  9. Elsässer, R., Sauerwald, T.: Broadcasting vs. mixing and information dissemination on Cayley graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 163–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Elsässer, R., Sauerwald, T.: The power of memory in randomized broadcasting. In: Proc. of SODA 2008, pp. 218–227 (2008)

    Google Scholar 

  11. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  12. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)

    Google Scholar 

  13. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures and Algorithms 1(4), 447–460 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10, 57–77 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing Letters 36(6), 305–308 (1990)

    Article  Google Scholar 

  16. Kahale, N.: Eigenvalues and expansion of regular graphs. Journal of the ACM 42, 1091–1106 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proc. of FOCS 2000, pp. 565–574 (2000)

    Google Scholar 

  18. Kermarrec, A.-M., Massouli, L., Ganesh, A.J.: Probabilistic reliable dissemination in large-scale systems. IEEE Transactions on Parallel and Distributed Systems 14(3), 248–258 (2003)

    Article  Google Scholar 

  19. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies 15, 199–262 (2006)

    MathSciNet  Google Scholar 

  20. Melamed, R., Keidar, I.: Araneola: A scalable reliable multicast system for dynamic environments. In: Proc. of NCA 2004, pp. 5–14 (2004)

    Google Scholar 

  21. Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47(1), 213–223 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sauerwald, T.: On mixing and edge-expansion properties in randomized broadcasting. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 196–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Tanner, M.: Explicit concentrators from generalized n-gons. SIAM J. Algebraic and Discrete Methods 5, 287–293 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berenbrink, P., Elsässer, R., Sauerwald, T. (2010). Randomised Broadcasting: Memory vs. Randomness. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics