Skip to main content

Limit Theorems for Random MAX-2-XORSAT

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

  • 1015 Accesses

Abstract

We consider random instances of the MAX-2-XORSAT optimization problem. A 2-XOR formula is a conjunction of Boolean equations (or clauses) of the form x ⊕ y = 0 or x ⊕ y = 1. The MAX-2-XORSAT problem asks for the maximum number of clauses which can be satisfied by any assignment of the variables in a 2-XOR formula. In this work, formula of size m on n Boolean variables are chosen uniformly at random from among all \(\binom{n(n-1) }{ m}\) possible choices. Denote by X n,m the minimum number of clauses that can not be satisfied in a formula with n variables and m clauses. We give precise characterizations of the r.v. X n,m around the critical density \(\frac{m}{n} \sim \frac{1}{2}\) of random 2-XOR formula. We prove that for random formulas with m clauses X n,m converges to a Poisson r.v. with mean \(-\frac{1}{4}\log(1-2c)-\frac{c}{2}\) when m = cn, c ∈ ]0,1/2[ constant. If \(m= \frac{n}{2}-\frac{\mu}{2}n^{2/3}\), μ and n are both large but μ = o(n 1/3), \(\frac{X_{n,m}-\lambda} {\sqrt{\lambda}}\) with \(\lambda=\frac{\log{n}}{12} -\frac{\log{\mu}}{4}\) is normal. If \(m = \frac{n}{2} + O(1)n^{2/3}\), \(\frac{X_{n,m}- \frac{\log{n}}{12}}{\sqrt{\frac{\log{n}}{12}}}\) is normal. If \(m = \frac{n}{2} + \frac{\mu}{2}n^{2/3}\) with 1 ≪ μ = o(n 1/3) then \(\frac{ 12X_{n,m}}{2\mu^3+\log{n}-3\log(\mu)} {\mathbin{\stackrel{{\mathop{\mathrm{dist.}}}}{\longrightarrow}}} 1\). For any absolute constant ε> 0, if μ = εn 1/3 then \(\frac{8(1+\varepsilon)}{n( \varepsilon^2 - \sigma^2)} X_{n,m} {\mathbin{\stackrel{{\mathop{\mathrm{dist.}}}}{\longrightarrow}}} 1\) where σ ∈ (0,1) is the solution of (1 + ε)e  − ε = (1 − σ)e σ. Thus, our findings describe phase transitions in the optimization context similar to those encountered in decision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., Moore, C.: Random k-SAT: Two moments suffice to cross a sharp threshold. SIAM Journal of Computing 36(3), 740–762 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Achlioptas, D., Naor, A., Peres, Y.: On the maximum satisfiability of random formulas. Journal of the ACM 54(2) (2007)

    Google Scholar 

  3. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-like Structures. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  4. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics (1985)

    Google Scholar 

  5. Bollobás, B., Borgs, C., Chayes, J.T., Kim, J.H., Wilson, D.B.: The scaling window of the 2-SAT transition. Random Structures and Algorithms 18, 201–256 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coppersmith, D., Hajiaghayi, M.T., Gamarnik, D., Sorkin, G.B.: Random MAX-SAT, random MAX-CUT, and their phase transitions. Random Structures and Algorithms 24(4), 502–545 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Creignou, N., Daudé, H.: Satisfiability threshold for random XOR-CNF formula. Discrete Applied Mathematics 96-97(1-3), 41–53 (1999)

    Google Scholar 

  8. Creignou, N., Daudé, H.: Coarse and sharp thresholds for random k-XOR-CNF satisfiability. Theoretical Informatics and Applications 37(2), 127–147 (2003)

    Article  MathSciNet  Google Scholar 

  9. Creignou, N., Daudé, H.: Coarse and sharp transitions for random generalized satisfiability problems. In: Proc. of the third Colloquium on Mathematics and Computer Science, pp. 507–516. Birkhäuser, Basel (2004)

    Google Scholar 

  10. Daudé, H., Ravelomanana, V.: Random 2-XORSAT phase transition. Algorithmica (2009); In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 12–23. Springer, Heidelberg (2008)

    Google Scholar 

  11. de Bruin, N.G.: Asymptotic Methods in Analysis. Dover, New York (1981)

    Google Scholar 

  12. DeLaurentis, J.: Appearance of complex components in a random bigraph. Random Structures and Algorithms 7(4), 311–335 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Diestel, R.: Graph Theory. Springer, Heidelberg (2000)

    Book  Google Scholar 

  14. Dubois, O., Mandler, J.: The 3-XOR-SAT threshold. In: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science, pp. 769–778 (2002)

    Google Scholar 

  15. Dubois, O., Monasson, R., Selman, B., Zecchina, R.: Phase transitions in combinatorial problems. Theoretical Computer Science 265(1-2) (2001)

    Google Scholar 

  16. Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Discrete Mathematics 75(1-3), 167–215 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  18. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. Journal of Statistical Physics 111, 535–564 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Friedgut, E.: Sharp thresholds of graph properties, and the k-SAT problem. appendix by J. Bourgain. Journal of the A.M.S. 12(4), 1017–1054 (1999)

    MATH  MathSciNet  Google Scholar 

  20. Goerdt, A.: A sharp threshold for unsatisfiability. Journal of Computer and System Sciences 53(3), 469–486 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goulden, I.P., Jackson, D.M.: Combinatorial enumeration. John Wiley and Sons, Chichester (1983)

    MATH  Google Scholar 

  22. Harary, F., Palmer, E.: Graphical enumeration. Academic Press, New-York (1973)

    MATH  Google Scholar 

  23. Harary, F., Uhlenbeck, G.: On the number of Husimi trees, I. Proceedings of the National Academy of Sciences 39, 315–322 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  24. Janson, S., Knuth, D.E., Łuczak, T., Pittel, B.: The birth of the giant component. Random Structures and Algorithms 4(3), 233–358 (1993)

    Article  MATH  Google Scholar 

  25. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley-Interscience, Hoboken (2000)

    MATH  Google Scholar 

  26. Kolchin, V.F.: Random graphs. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  27. Pittel, B., Wormald, N.C.: Counting connected graphs inside-out. Journal of Comb. Theory, Ser. B 93(2), 127–172 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ravelomanana, V.: Another proof of Wright’s inequalities. Information Processing Letters 104(1), 36–39 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wright, E.M.: The number of connected sparsely edged graphs. Journal of Graph Theory 1, 317–330 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wright, E.M.: The number of connected sparsely edged graphs III: Asymptotic results. Journal of Graph Theory 4(4), 393–407 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rasendrahasina, V., Ravelomanana, V. (2010). Limit Theorems for Random MAX-2-XORSAT. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics