Skip to main content

Problem Solving on One-Bit-Communication Cellular Automata

  • Chapter
  • First Online:
Simulating Complex Systems by Cellular Automata

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In recent years, interest in cellular automata (CA) has been increasing in the field of modeling real phenomena that occur in biology, chemistry, ecology, economy, geology, mechanical engineering, medicine, physics, sociology, and public transportation. Cellular automata are considered to provide a good model of complex systems in which an infinite array of finite state machines (cells) updates itself in a synchronous manner according to a uniform local rule. In the present paper, we study a problem solving on a special subclass of cellular automata: one-bit inter-cell communication cellular automaton. The problems dealt with are a firing squad synchronization problem, an integer sequence generation problem, an early bird problem, and a connectivity recognition problem for two-dimensional binary images, all of which are classical, fundamental problems that have been studied extensively on O(1)-bit communication models of cellular automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.M. Alnuweiri, V.K. Prasanna, Fast image labeling using local operators on mesh-connected computers. IEEE Trans. PAMI. 13(2), 202–207 (1991)

    Article  Google Scholar 

  2. H.M. Alnuweiri, V.K. Prasanna, Parallel architectures and algorithms for image component labeling. IEEE Trans. PAMI. 14(10), 1014–1034 (1992)

    Article  Google Scholar 

  3. M. Arisawa, On the generation of integer series by the one-dimensional iterative arrays of finite state machines (in Japanese). The Trans. IECE. 71/8 54-C(8), 759–766 (1971)

    Google Scholar 

  4. R. Balzer, An 8-state minimal time solution to the firing squad synchronization problem. Inf. Control, 10, 22–42 (1967)

    Article  Google Scholar 

  5. W.T. Beyer, Recognition of Topological Invariants by Iterative Arrays. Ph.D. Thesis, (MIT, Massachusetts, 1969)

    Google Scholar 

  6. R.E. Cypher, J.L.C. Sanz, L. Snyder, Algorithms for image component labeling on SIMD mesh-connected computers. IEEE Trans. Comput. 39(2), 276–281 (1990)

    Article  Google Scholar 

  7. R.E. Cypher, J.L.C. Sanz, The SIMD Models of Parallel Computation. (Springer-Verlag, Heidelberg, 1994)

    Book  Google Scholar 

  8. P.C. Fischer, Generation of primes by a one-dimensional real-time iterative array. J. ACM. 12(3), 388–394 (1965)

    Article  MATH  Google Scholar 

  9. H.D. Gerken, Über Synchronisations – Probleme bei Zellularautomaten. Diplomarbeit (Institut für Theoretische Informatik, Technische Universität Braunschweig, Braunschweig, 1987)

    Google Scholar 

  10. E. Goto, A minimal time solution of the firing squad problem. Dittoed course notes for Applied Mathematics 298, Harvard University (1982)

    Google Scholar 

  11. J. Gruska, S.L. Torre, M. Parente, The firing squad synchronization problem on squares, toruses and rings. Intern. J. Found. Comput. Sci. 18(3), 637–654 (2007)

    Article  MATH  Google Scholar 

  12. N. Kamikawa, H. Umeo, A generalized FSSP algorithm on one-bit communication cellular automata. (draft version) (2008)

    Google Scholar 

  13. H. Kleine-Büning, The early bird problem is unsolvable in a one-dimensional cellular space with 4 states. Acta Cybernetica, 6, 23–31 (1983)

    MATH  MathSciNet  Google Scholar 

  14. I. Korec, Real-time generation of primes by a one-dimensional cellular automaton with 11 states. Proc. 22nd Int. Symp. MFCS ’97. LNCS 1295, 358–367 (1997)

    MathSciNet  Google Scholar 

  15. F.T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. (Morgan Kaufmann, San Fransisco, CA, 1992)

    Google Scholar 

  16. T. Legendi, E. Katona, A 5-state solution of the early bird problem in a one-dimensional cellular space. Acta Cybernetica. 5(2), 173–179 (1981)

    MATH  MathSciNet  Google Scholar 

  17. S. Levialdi, On shrinking binary picture patterns. Commun. ACM. 15(1), 7–10 (1972)

    Article  MATH  Google Scholar 

  18. M. Manohar, H.K. Ramapriyan, Connected component labeling of binary images on a mesh connected massively parallel processor. Comput. Visi. Graph. Image Process. 45, 133–149 (1989)

    Article  Google Scholar 

  19. J. Mazoyer, A six-state minimal time solution to the firing squad synchronization problem. Theore. Comput. Sci. 50, 183–238 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Mazoyer, V. Terrier, Signals in one-dimensional cellular automata. Theor. Comput. Sci., 217, 53–80 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Mazoyer, On optimal solutions to the firing squad synchronization problem. Theor. Comput. Sci. 168, 367–404 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Miller, Q.F. Stout, Parallel algorithms for regular architectures: meshes and pyramids. (The MIT Press, Massachusetts, 1996)

    Google Scholar 

  23. E.F. Moore, The firing squad synchronization problem, ed. by E.F. Moore, Sequential Machines, Selected Papers (Addison-Wesley, Reading MA, 1964)

    Google Scholar 

  24. F.R. Moore, G.G. Langdon, A generalized firing squad problem. Information and Control. 12, 212–220 (1968)

    Article  MATH  Google Scholar 

  25. J. Nishimura, T. Sogabe, H. Umeo, A design of optimum-time firing squad synchronization algorithm on 1-bit cellular automaton. Proceedings of The 8th International Symposium on Artificial Life and Robotics, 381–386 (2003)

    Google Scholar 

  26. A. Rosenfeld, Connectivity in digital pictures. J. ACM. 17(1), 146–160 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Rosenstiehl, J.R. Fiksel, A. Holliger, Intelligent graphs: Networks of finite automata capable of solving graph problems, ed. by R.C. Reed. Graph Theory and Computing (Academic, New York, NY, 1973)

    Google Scholar 

  28. A. Settle, J. Simon, Smaller solutions for the firing squad. Theoretical Computer Science. 276, 83–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. I. Shinahr, Two- and three-dimensional firing squad synchronization problems. Inf. Control. 24, 163–180 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Szwerinski, Time-optimum solution of the firing-squad-synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theor. Comput. Sci. 19, 305–320 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. S.L. Torre, M. Napoli, M. Parente, Firing squad synchronization problem on bidimensional cellular automata with communication constraints. Proc. MCU 2001. LNCS 2055, 264–275 (2001)

    Google Scholar 

  32. H. Umeo, Linear-time recognition of connectivity of binary images on 1-bit inter-cell communication cellular automaton. Parallel Comput. 27, 587–599 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Umeo, Firing squad synchronization problem in cellular automata. ed. by R.A. Meyers, Encyclopedia of Complexity and Systems Science (Springer, Heidelberg, 2009)

    Google Scholar 

  34. H. Umeo, M. Hisaoka, K. Michisaka, N. Nishioka, M. Maeda, Some new generalized synchronization algorithms and their implementations for large scale cellular automata. LNCS 2509, 276–286 (2002)

    MathSciNet  Google Scholar 

  35. H. Umeo, M. Hisaoka, T. Sogabe, A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. Int. J. Unconventional Comput. 1, 403–426 (2005)

    Google Scholar 

  36. H. Umeo, N. Kamikawa, A design of real-time non-regular sequence generation algorithms and their implementations on cellular automata with 1-bit inter-cell communications. Fundamenta Inf. 52, 255–275 (2002)

    MathSciNet  Google Scholar 

  37. H. Umeo, N. Kamikawa, Real-time generation of primes by a 1-bit-communication cellular automaton. Fundamenta Inf. 58(3, 4), 421–435 (2003)

    MATH  MathSciNet  Google Scholar 

  38. H. Umeo, M. Maeda, M. Hisaoka, M. Teraoka, A state-efficient mapping scheme for designing two-dimensional firing squad synchronization algorithms. Fundamenta Inf. 74(4), 603–623 (2006)

    MATH  MathSciNet  Google Scholar 

  39. H. Umeo, G. Mauri, A duality in two topology-preserving parallel shrinking algorithms - Between Beyer’s and Levialdi’s algorithms –. Future Generation Comput. Syst. 18 931–937 (2001)

    Article  Google Scholar 

  40. H. Umeo, K. Michisaka, N. Kamikawa, M. Kanazawa, State-efficient one-bit communication solutions for some classical cellular automata problems. Fundamenta Inf. 78(3), 449–465 (2007)

    MATH  MathSciNet  Google Scholar 

  41. H. Umeo, T. Yanagihara, State-efficient optimum-time implementations of synchronization algorithms on CA1-bit. (draft version) (2008)

    Google Scholar 

  42. H. Umeo, T. Yanagihara, M. Kanazawa, State-efficient firing squad synchronization protocols for communication-restricted cellular automata. LNCS 4173, 169–181 (2006)

    Google Scholar 

  43. V.I. Varshavsky, V.B. Marakhovsky, V.A. Peschansky, Synchronization of interacting automata. Mathematical Systems Theory. 4(3), 212–230 (1970)

    Article  MathSciNet  Google Scholar 

  44. R. Vollmar, On two modified problems of synchronization in cellular automata. Acta Cybernetica. 3(4), 293–300 (1978)

    MathSciNet  Google Scholar 

  45. A. Waksman, An optimum solution to the firing squad synchronization problem. Inf. Control. 9, 66–78 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Umeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Umeo, H. (2010). Problem Solving on One-Bit-Communication Cellular Automata. In: Kroc, J., Sloot, P., Hoekstra, A. (eds) Simulating Complex Systems by Cellular Automata. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12203-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12203-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12202-6

  • Online ISBN: 978-3-642-12203-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics