Abstract
Segmenting mammographic images into homogeneous texture regions representing disparate tissue types is often a useful preprocessing step in the computer-assisted detection of breast cancer. Hence new algorithm to detect cancer in mammogram breast cancer images is proposed. In this paper we proposed segmentation using vector quantization technique. Here Linde Buzo Gray (LBG) for segmentation of mammographic images is used. Initially a codebook (CB) of size 128 was generated for mammographic images. These code vectors were further clustered in 8 clusters using same algorithm. These 8 images were displayed as a result. The codebook of size 128 clustered to 16 code vectors, codebook of size 128 clustered to 8 code-vectors using LBG algorithm is compared with watershed algorithm. The proposed approach does not lead to over segmentation or under segmentation with less complexity with more accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kegelmeyer, W.P.: Computer detection of stellate lesions in mammograms. In: Proc. SPIE Biomed. Image Processing, vol. 1660, pp. 446–454 (1992)
Qian, W., Clarke, L.P., Kallergi, M., Li, H., Velthuizen, R., Clark, R.A., Silbiger, M.L.: Tree-structured nonlinear filter and wavelet transform for microcalcification segmentation in mammography. In: SPIE Biomed. Image Processing and Biomed. Visual., vol. 1905, pp. 509–520 (1993)
Zhao, D.: Rule-based morphological feature extraction of microcalcifications in mammograms. In: SPIE Med. Imag., vol. 1095, pp. 702–715 (1993)
Lo, S.C., Chan, H.P., Lin, J.S., Li, H., Freedman, M.T., Mun, S.K.: Artificial convolution neural network for medical image pattern recognition. Neural Networks 8(7/8), 1201–1214 (1995)
Karssemeijer, N.: Recognition of clustered microcalcifications using a random field model. In: SPIE Med. Imag., vol. 1905, pp. 776–786 (1993)
Lefebvre, F., Benali, H., Gilles, R., Kahn, E., Paola, R.D.: A fractal approach to the segmentation of microcalcification in digital mammograms. Med. Phys. 22(4), 381–390 (1995)
Yoshida, H., Doi, K., Nishikawa, R.M.: Automated detection of clustered microcalcifications in digital mammograms using wavelet transform techniques. In: SPIE Image Processing, vol. 2167, pp. 868–886 (1994)
Laine, F., Schuler, S., Fan, J., Huda, W.: Mammographic feature enhancement by multiscale analysis. IEEE Trans. Med. Imag. 13(4), 725–740 (1994)
Tou, J., Gonzalez: Pattern Recognition Principles. Addison-Wesley Publishing Company, Reading (1974)
Kekre, H.B., Gharge, S.: Selection of Window Size for Image Segmentation using Texture Features. In: Proceedings of International Conference on Advanced Computing & Communication Technologies (ICACCT 2008) Asia Pacific Institute of Information Technology SD India, Panipat, November 08-09 (2008)
Kekre, H.B., Gharge, S.: Image Segmentation of MRI using Texture Features. In: Proceedings of International Conference on Managing Next Generation Software Applications, School of Science and Humanities, Karunya University, Coimbatore, Tamilnadu, December 05-06 (2008)
Kekre, H.B., Gharge, S.: Statistical Parameters like Probability and Entropy applied to SAR image segmentation. International Journal of Engineering Research & Industry Applications (IJERIA) 2(IV), 341–353
Kekre, H.B., Gharge, S.: SAR Image Segmentation using co-occurrence matrix and slope magnitude. In: ACM International Conference on Advances in Computing, Communication and Control (ICAC3 2009), Fr. Conceicao Rodrigous College of Engg., Mumbai, January 23-24, pp. 357–362 (2009) (Available on ACM portal)
Haralick, R.M.: IEEE Proceedings of Statistical and Structural Approaches to Texture 67(5) (May 1979)
Shafarenko, L., Petrou, M.: Automatic Watershed Segmentation of Randomly Textured Color Images. IEEE Transactions on Image Processing 6(11), 1530–1544 (1997)
Alhadidi, B., Mohammad, H., et al.: Mammogram Breast Cancer Edge Detection Using Image Processing Function. Information Technology Journal 6(2), 217–221 (2007)
Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Transactions on Communication COM-28, 85–94 (1980)
Gray, R.M.: Vector quantization. IEEE ASSP Magazine 1, 4–29 (1984)
Kekre, H.B., Sarode, T.K.: New Fast Improved Clustering Algorithm for Codebook Generation for Vector Quantization. In: International Conference on Engineering Technologies and Applications in Engineering, Technology and Sciences, Computer Science Department, Saurashtra University, Rajkot, Gujarat, India, Amoghsiddhi Education Society, Sangli, Maharashtra, India, January 13-14 (2008)
Kekre, H.B., Sarode, T.K.: New Fast Improved Codebook Generation Algorithm for Color Images using Vector Quantization. International Journal of Engineering and Technology 1(1), 67–77 (2008)
Kekre, H.B., Sarode, T.K.: Fast Codebook Generation Algorithm for Color Images using Vector Quantization. International Journal of Computer Science and Information Technology 1(1), 7–12 (2009)
Kekre, H.B., Sarode, T.K.: An Efficient Fast Algorithm to Generate Codebook for Vector Quantization. In: First International Conference on Emerging Trends in Engineering and Technology, ICETET 2008, Raisoni College of Engineering, Nagpur, India, July 16-18, pp. 62–67 (2008), IEEE Xplore
Kekre, H.B., Sarode, T.K.: Fast Codebook Generation Algorithm for Color Images using Vector Quantization. International Journal of Computer Science and Information Technology 1(1), 7–12 (2009)
Kekre, H.B., Sarode, T.K.: Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook. WASET International Journal of cal Computer Information Science and Engineering (IJCISE) 2(4), 235–239 (Fall 2008), http://www.waset.org/ijcise
Kekre, H.B., Sarode, T.K.: Fast Codebook Search Algorithm for Vector Quantization using Sorting Technique. In: ACM International Conference on Advances in Computing, Communication and Control (ICAC3 2009), Fr. Conceicao Rodrigous College of Engg., Mumbai, January 23-24, pp. 317–325 (2009) (Available on ACM portal)
Kekre, H.B., Sarode, T.K., Raul, B.: Color Image Segmentation using Kekre’s Fast Codebook Generation Algorithm Based on Energy Ordering Concept. In: ACM International Conference on Advances in Computing, Communication and Control (ICAC3 2009), Fr. Conceicao Rodrigous College of Engg., Mumbai, January 23-24, pp. 357–362 (2009) (Available on ACM portal)
Kekre, H.B., Sarode, T.K., Raul, B.: Color Image Segmentation using Kekre’s Algorithm for Vector Quantization. International Journal of Computer Science (IJCS) 3(4), 287–292 (Fall 2008), http://www.waset.org/ijcs
Kekre, H.B., Sarode, T.K., Raul, B.: Color Image Segmentation using Vector Quantization Techniques Based on Energy Ordering Concept. International Journal of Computing Science and Communication Technologies (IJCSCT) 1(2), 164–171 (2009)
Kekre, H.B., Sarode, T.K., Raul, B.: Color Image Segmentation Using Vector Quantization Techniques. Advances in Engineering Science Sect. C (3), 35–42 (2008)
Kekre, H.B., Sarode, T.K.: Speech Data Compression using Vector Quantization. WASET International Journal of Computer and Information Science and Engineering (IJCISE) 2(4), 251–254 (Fall 2008), http://www.waset.org/ijcise
Kekre, H.B., Sarode, T.K., Thepade, S.D.: Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation. ICGST-International Journal on Graphics, Vision and Image Processing (GVIP) 9(5), 1–8 (2009), http://www.icgst.com/gvip/Volume9/Issue5/P1150921752.html
Kekre, H.B., Sarode, T.K., Thepade, S.D.: Color-Texture Feature based Image Retrieval using DCT applied on Kekre’s Median Codebook. International Journal on Imaging (IJI), www.ceser.res.in/iji.html
Kekre, H.B., Sarode, T.K.: Vector Quantized Codebook Optimization using K-Means. International Journal on Computer Science and Engineering (IJCSE) 1(3), 283–290 (2009), http://journals.indexcopernicus.com/abstracted.php?level=4&id_issue=839392
Kekre, H.B., Sarode, T.K.: 2-level Vector Quantization Method for Codebook Design using Kekre’s Median Codebook Generation Algorithm. Advances in Computational Sciences and Technology (ACST) 2(2), 167–178 (2009), http://www.ripublication.com/Volume/acstv2n2.htm
Kekre, H.B., Sarode, T.K.: Bi-level Vector Quantization Method for Codebook Generation. In: Second International Conference on Emerging Trends in Engineering and Technlogy, G. H. Raisoni College of Engineering, Nagpur, December 16-18 (2009) (this paper will be uploaded online at IEEE Xplore)
Clark, A.F.: The mini-MIAS database of mammograms, http://peipa.essex.ac.uk/info/mias.html (Last updated on July 31, 2003) (referred on 16-09-2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kekre, H.B., Sarode, T.K., Gharge, S.M. (2010). Vector Quantization for Tumor Demarcation of Mammograms. In: Das, V.V., et al. Information Processing and Management. BAIP 2010. Communications in Computer and Information Science, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12214-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-12214-9_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12213-2
Online ISBN: 978-3-642-12214-9
eBook Packages: Computer ScienceComputer Science (R0)