Skip to main content

Highly-Automatic MI Based Multiple 2D/3D Image Registration Using Self-initialized Geodesic Feature Correspondences

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Included in the following conference series:

Abstract

Intensity based registration methods, such as the mutual information (MI), do not commonly consider the spatial geometric information and the initial correspondences are uncertainty. In this paper, we present a novel approach for achieving highly-automatic 2D/3D image registration integrating the advantages from both entropy MI and spatial geometric features correspondence methods. Inspired by the scale space theory, we project the surfaces on a 3D model to 2D normal image spaces provided that it can extract both local geodesic feature descriptors and global spatial information for estimating initial correspondences for image-to-image and image-to-model registration. The multiple 2D/3D image registration can then be further refined using MI. The maximization of MI is effectively achieved using global stochastic optimization. To verify the feasibility, we have registered various artistic 3D models with different structures and textures. The high-quality results show that the proposed approach is highly-automatic and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Witkin, A.P.: Scale-space filtering. In: Proc. Int. Joint Conf. Artif. Intell., IJCAI Karlsruhe, pp. 1019–1021 (1983)

    Google Scholar 

  2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  3. Novatnack, J., Nishino, K.: Scale-dependent 3D geometric features. In: IEEE Eleventh International Conference on Computer Vision (2007)

    Google Scholar 

  4. Viola, P.A.: Alignment by maximization of mutual information. Technical Report AITR-1548 (1995)

    Google Scholar 

  5. Cleju, I., Saupe, D.: Stochastic optimization of multiple texture registration using mutual information. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 517–526. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Lensch, P., Heidrich, W., Seidel, H.P.: Automated texture registration and stitching for real world models. In: Pacific Graphics (2000)

    Google Scholar 

  7. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey, pp. 157–186. Springer, Heidelberg (2005)

    Google Scholar 

  8. Yoshizawa, S., Belyaev, A., Seidel, H.-P.: A fast and simple stretch-minimizing mesh parametrization. In: Int. Conf. on Shape Modeling and Applications (2004)

    Google Scholar 

  9. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: ACM SIGGRAPH 1995, pp. 173–182 (1995)

    Google Scholar 

  10. Förstner, W.: A feature based correspondence algorithm for image matching. Int. Arch. Photogrammetry Remote Sensing 26(3), 150–166 (1986)

    Google Scholar 

  11. Duda, R.O., Hart, P.E.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)

    Google Scholar 

  12. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)

    Google Scholar 

  13. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Journal of Image and Vision Computing 15(1), 59–76 (1997)

    Article  Google Scholar 

  15. Taylor, C.J., Kriegman, D.J.: Minimization on the lie group SO(3) and related manifolds. Technical report, Dept. of E.E. Yale University (1994)

    Google Scholar 

  16. Rodehorst, V., Hellwich, O.: Genetic algorithm sample consensus (GASAC) - a parallel strategy for estimation. In: 25 Years of RANSAC in CVPR (2006)

    Google Scholar 

  17. Penney, G.P., Edwards, P.J., King, A.P., Blackall, J.M., Batchelor, P.G., Hawkes, D.J.: A stochastic iterative closest point algorithm. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 762. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Nishino, K., Sato, Y., Ikeuchi, K.: Appearance compression and synthesis based on 3D model for mixed reality. In: IEEE Int. Conf. Computer Vision, pp. 38–45 (1999)

    Google Scholar 

  19. Jank, Z., Chetverikov, D.: Photo-consistency based registration of an uncalibrated image-pair to a 3D model using genetic algorithm. In: 3DPVT, pp. 616–622 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, H., Cleju, I., Saupe, D. (2010). Highly-Automatic MI Based Multiple 2D/3D Image Registration Using Self-initialized Geodesic Feature Correspondences. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics