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Abstract. Intensity based registration methods, such as the mutual in-
formation (MI), do not commonly consider the spatial geometric infor-
mation and the initial correspondences are uncertainty. In this paper,
we present a novel approach for achieving highly-automatic 2D/3D imn-
age registration integrating the advantages from both entropy MI and
spatial geometric features correspondence methods. Inspired by the scale
space theory, we project the surfaces on a 3D model to 2D normal inage
spaces provided that it can extract both local geodesic feature descriptors
and global spatial information for estimating initial correspondences for
image-to-image and image-to-model registration. The multiple 2D/3D
image registration can then be further refined using MI. The maximiza-
tion of M1 is effectively achieved using pglobal stochastic optimization. To
verify the feasibility, we have registered various artistic 3D models with
different structures and textures. The high-quality results show that the
proposed approach is highly-automatic and relinble.

1 Introduction

Multiple 2D/3D image registration and mapping is a key problem in computer
vision that shows up in a wide variety ol applications such as medical image
analysis, object Lracking, recognition and visualization. In practice, due to the
less information about intra- and inter-correspondences for captured multiple
images and the 3D model, the problem of multiple 2D/3D image registration is
highly ill-posed. The M1 measure based 2D/3D image registration methods take
only intensily values into account withoul considering spatial geometrie infor-
mation. The error ol initial correspondences may casily lead to a blunder in the
final registration. Therefore, it is often that the initial spatial correspondences
are manually determined by users, which is non-efficient and time consuming,
This paper presents a novel approach for highly-automatic MI based texture
registration using self-initialized geodesic [eature correspondences. Given a 3D
shape model and multiple imadges, we perform this approach in three main steps
with respect to the search of initial spatial correspondences, the estimation of
projective transformation of multiple views, and the refinement of texture reg-
istration. At livst, we extract local features of surfaces on a 31 shape. However,
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direcl geomelric feature extraction on 3D shapes is difficult. The reason is that
the scale-variability of geometric structures on scanned 31D models are simplified
due to discrete 3D coordinate point-clouds or triangulated surfaces on 31D models,
shown in Fig. 1. Traditional work extract feature descriptors using only surface
and curvature smoothing based on 3D coordinates lacking canonical scale anal-
ysis. The important diseriminative information encoded in the scale-variability
of intringic geometric structures are easily ignored, Recent work on the scale-
variability of images as a 21D projection of 3D objects [1], scale invariant features
in the discrete scale space for 2D images [2], and scale-dependent 3D geomelric
features [3] have been studied intensively. Inspired from these work, we present a
comprehensive framework for analyzing and extracting local feature descriplors
using the constructed multiple normal maps in geometric scale-spaces.

Secondly, the projective transformation of correspondences for image-to-image
2D/2D and image-to-model 2D/3D are estimated using sparse geomelric features
and related camera parameter estimation procedures. The key idea underlying
Lhe correspondence between o 3D shape and images is that multiple 2D normal
images are the 2D projections of geometric surfaces on a 3D shape. The con-
verted multiple normal maps encode the rich geometric information within the
spatial distribution of each local features that are sparsely distributed on the nor-
mal images using geodesic distance measure. The self-initial correspondences are
estimated in two steps with respect to 2D/2D and 2D/3D correspondences, Fur-
thermore, a maximization of MI method (4], (5] is extended for refining multiple
2D /3D image registration using sell-initialized geodesic fealure correspondences,

Our approach has several advantages. Fivst, the approach is highly-automatic
and eflicient, lacilitaling the human supervision and the search of initial cor-
respondences Lo geometric 3D models with varying geometric complexity. One
only needs to define the group of input images according Lo Lheir surface repre-
sentations on the 3D shapes. The best position of given multiple viewed images
to the 3D surlace is determined using sell-initialized correspondences. Second,
sparse geomebric features based initial correspondence does nol require camera
captured images to contain the entire 3D object for the purpose of silhouette
extraction [6], or shape outline extraction. Third, the approach allows sparse
geomelric feature correspondences and entropy MI based optimization to be
integrated for solving a practical problem in a reliable and optimal way.

The rest of the paper is organized as follows. Section 2 presents the concepls
of multiple normal images of a 3D shape model. Section 3 describes the geodesic
measure and sparse geometrie feature extraction, Seetion 4 formulates the global
stochastic optimization based maximization of M1 Implementation details and
experimental results are presented in Section 5.

2 Multiple Normal Image Representation of a 3D Model

Given a triangular mesh model of a 3D object, a original mesh M is parame-
terized to a planar domain . The parametrization p @ D — M is a bijective
mapping from a discrete set of planar points to the mesh vertex set. Normally,
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Fig. 1. a|ble]d. (a) A partial point-clouds 31) model. (b) Shaded 3D model. (¢) Normals
on the 3D model. (d) 2D mesh parameterization with fixed boundary of this 3D model.

parameterizing a mesh to a planar domain does not preserve the angles and the
surface area of faces on the mesh. Some changes in the angles and surface area
are considered as distortions. Minimizing the parameterization distortion is a
challenging problem [7], [8], [9]. For example, in Fig. 1(d), we parameterize one
2D mesh image that encodes the original 3D model.

Although the geometric properties can be encoded via 3D coordinates and
curvatures, the surface normals have been demonstrated as a suitable base rep-
resentation, shown in Fig. 1(c). It allows us to use Gaussian filtering on the 3D
shape without influencing the Lopology of 3D shapes. The normal directions are
critical for detecting 3D features. To implement, it, we project the surface normal
of each vertex of the 3D model and then interpolate those values in the planar do-
main using barycenter coordinates within each triangular face to obtain a dense
normal map. The resulting normal map is a geometric 2D image representation
of the original 3D shape (or part of the shape) that is independent of the reso-
lution of its 3D model. To achieve accurate representation of geometric surfaces
on a 3D shape to one or multiple normal images, we define the transformation
in terms of geodesic distances instead of the traditional Euclidean distances.

‘I'he generated one or multiple normal maps eannol exaclly represent Lhe origi-
nal 3D shape due to the distortion of parameterization. For example,
the distance between any two points in the normal map is not equivalent to
the corresponding relative geodesic distance on the 3D model. To construct 2D
surface representation of the original shape, the correct relative geodesic dis-
Lances belween any two points on the normal map is necessary. Therefore, the
distortion is computed for each point in the normal map. Given a point v € D
that maps to a 3D mesh vertex ¥(v), we define its distortion £(v) in Lthe equation
&(v) = m 2 ucadi(v) "T,(n‘:;%;l%m, where adj(v) is a set of vertices adjacent
to v. The local distortion is a measure of the average change in the length of the
edge adjacent to a vertex. The large £(v), the more the adjacent edges have been
stretched in the parameterization around v. We then construct a dense map of
distortion values in this way. The resulting distortion map is to approximate the
geodesic distances between any two points in the normal map.
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Fig. 2. :}'IFI: Geodesics Gaussian distribution on embedded surfaces in 3D spaces.
(a)(b)(c)(d) The boundary of geodesic Gaussian kernel with a radius. (e)(f)(g)(h) The

distribution of geodesic gaussian kernels with a given radius.

3 Geodesics Measure and Feature Corners Extraction

To achieve initial correspondence searching, we have to define the right feature
spaces. To detect salient feature corners for matching, we first derive the first or-
der and second order partial derivatives of the normal map N, . Novel feature cor-
ners can then be derived using these partial derivatives using geodesics distance
as the distance metric which can accuralely represent the local surface geometry
in scale-space. Given a 2D isotropic Gaussian centered al a point u € D, we define
the value of geodesic Gaussian kernel at a point v, then the boundary of geodesic
support region on a intensity surface in 3D space. The geodesic Gaussian kernel is

dorived as Gyeod(v, 1, 0) = 527 6xp [—E"%%;'—EL:], where dyeod ¢ R? x R*? » R
is the geodesic distance between the 3D surface points ¥(v) and ¥(u). The
geodesic distance between two 3D points is defined as the discretized line inte-
gral dyepa(v,w) in the distortion map, which can be computed a8 dyeoa(v, 1) =
):m-ﬂtw ﬂﬂ"'i*{ﬂ*—‘-)-—-]h,-. Vg1 ||, where $2(u,v) = [vy, vz, v, u] is a list
of points Hnmplorl on the surface belween v and . The density of this geodesic
sampling determine the quality of the approximation of the original geodesic dis-
Lanee. Using the geodesic Gaussian kernel, the normal al point u for scale level
o as No(u) = 37 c o N(0)Ggeoa(vi w, 0) /|| 3oy c p N(0)Gyeoa(vi 1, 0)|| , where FF
is a sel of points in a window centered at u. The window size is also deflined
in terms of geodesic distance and is proportional to the standard deviation o
al each scale level. In our implementation, we change the size of the window
from the center point while evaluating each point’s geodesic distance from the
center to correctly estimating the distribution of similar “high” points. Note that
the geodesic Gaussian kernel can be performed for the image embedded surface
with the 3rd coordinate of intensity in 3D space. Fig. 2 shows the non-isotropic
boundary distribution of geodesic Gaussian kernel with a scale o for an embed-
ded surface in 3D spaces. It has the same elfects on the normal maps which can
be sinoothed using the geodesic Gaussian kernel in different scales.
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function are defined using the full color space. The MI belween images [y and
Iy, associated with the transforms T and 7%, is defined as:

ML (T (2)), L(Ta(2))] = KL (T1 ()] + H[E(T2(2))] = H[L(T1(2)), 2(T2(x)))]

The main advantage of the formulation is that the new objective functions bring
the surfuce BRDEF in the global optimization criterion. In this function, the
image-to-image MI is defined from the chrominance components [ and @ of
the YIQ color space, The image-to-image M1 is parameterized by the projective
transformations associated with both images, and it is maximized when both
images are aligned to the model. The stochastic gradient estimation follows the
same procedure as for the image-to-model ML

For the joint refinement and optimal registration of several images to a 3D
model, we use a multi-objective optimization method [5] that is defined as a
linear combination of the elementary MI [unctions with non-negative weights.
In this method, firstly, when all images are aligned and the registration refined
to the model, all objective functions are maximized. If only the image-to-model
MI functions are considered, each sel of camera parameters corresponds to one
objective function. In this case the iterative gradient-based optimization updates
each sel of parameters in the direction ol Lhe corresponding gradient. Secondly,
when all image-to-image MI functions are considered, we estimate several gra-
dients for the parameters of each camera, corresponding to the MI with the
model and with other overlapping images. In each iteration we must choose the
direction for optimization based on the these gradients.

5 Implementation and Experimental Results

We present Lhe implementation in detail. Sequentially, we deseribe the interme-
diate and final registration results in our experiments for the proposed approach,

5.1 Self-initialized Correspondence Using Sparse Features

In this step, we estimate initial correspondence for both image-to-image and
image-to-model matching. We have implemented the proposed geodesic feature
corner extraction method on the normal maps which is parameterized Irom the
3D shape models. Then we present automatic initial correspondence results for
image-to-image and image-to-model via certain related matching algorithms and
a camera sell-calibration method. Finally, we further optimize the extrinsic pa-
rameters of the cameras and refine the registration results using the MI based
global stochastic optimization framework.

Firstly, the projective transformation 7' is computed by estimaling camera
model. The optimization model does not make assumptions on the projective
transformation 7', and consequently on the camera model. In our implementa-
tion we consider the pinhole camera model [12] with four distortion cocflicients
(two for radial distortion and two for tangential distortion). Since multiple views
of photographs have been taken around the real 3D object, any two uncalibrated



432 H. Zheng, 1. Cleju, and D. Saupe

Fig. 3. alble Initial correspondence searching of pairwise texture images. (a)(b) Two
captured texture images for the real 3D object with detected and triangulated feature
corners. (¢) Unsupervised searching of initial feature correspondence between pairwise
texture images (a) and (b) using the GASAC method.

Fig. 4. alble (a) Project two images to the 3D model using the self-initialized feature
correspondence. (b) Zoom in (a). (¢) After projective transformation, these texture
images are initially mapped to the surface of the 3D model, Note that these two images
were taken with different illuminations (one texture image was Laken using (lashlight).

image consequences can be used to estimate the fundamental camera matrix
and epipolar lines for pairwise image-to-image matching [13]. The intrinsic pa-
rameters field-of-view, optical center, and distortions, were sell-calibrated using
Zhang's method [14] which are used as initial value for constructing image-to
model correspondence. Any of projective transformation parameters are further
refined and optimized using the MI based multiple objective functions. In our
experiments, we consider the intrinsic parameters fixed and we optimize only the
extrinsic parameters. The rotation matrix is parameterized by axis-angle form
for its advantages over Buler angles in the iterative optimization [15].

Secondly, image-Lo-image 21D/2D correspondences are sell-initialized using an
extended RANSAC algorithm. The initial correspondence for 2D/2D matching is
to determine the relative orientation of the images. The sell-initialization is esti-
mated using Lhe methods in multiple view geometry [13], [12]. We have estimated
the fundamental matrix and the epipolar lines for describing the projective rel-
ative orientation of uncalibrated images. To handle the large number of highly
resolving images, the computationally intensive RANSAC algorithm for robust
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Fig.5. & *;'f High-fidelity 2D/3D texture registration results using the suggested
method. (a)(e) Camera photo for the real 3D object. (b)(f) The scanned 3D model.

(e)(g) and (d)(h) I"inal results of multiple image registration on the 3D model.

outlier detection has been replaced by a faster evolutionary approach called Ge-
netic Algorithm Sampling Consensus GASAC [16]. The initial correspondence
value and results of the feature based matching are shown in Fig. 3.

Furthermore, image-to-model 3D/2D correspondence are estimated based on
estimated camera parameters and additional camera calibration. To find ini-
tial correspondence value between the 3D shape and the given texture images,
we have extracted and utilized the obtained geodesic feature descriptors using
normal maps of the 3D shape. We convert the 3D/2D matching problem to a
3D/3D one. Similar to the ICP algorithm [17], the search of initial correspon-
dence is to estimate a paired-point matching transformation based on geodesic
feature points and then apply the transformation Lo one side of the registration,
We have scanned several artistic 3D objects with metal surface and reflection. In
Fig. 4(a) and (b), we can see some images are initially projected to the surface on
the 3D model without any projective transformation processing using sparsely
distributed correspondent feature points. After the projective transformation us-
ing self-calibrated transformation parameters, shown in Fig. 4(c), several images
with different illuminations are mapped on the surface of the 3D shape model
after refined projection and registration,

5.2 Color Image Registration and Comparison of Other Approaches

The multiple image registration can be refined and tuned using the maximiza-
tion of mutual information. If a patch of the surface is visible in two images after
sell-initialized correspondence, we will simply say that the images overlap. We
define image-to-image MI functions for each overlap. In [18], a 3D model with
reflectance values mapped on its surfnce was registered to color images nsing the
method [4]. Tlere, we extend the objective function for fully color information



434 H. Zheng, 1. Cleju, and D. Saupe

Fig. 6. albleld High-fidelity 2D/3D texture registration results using the suggested
method. (a) Photograph. (b) The scanned 3D model. (¢)(d) Final results of multiple
image registration using the suggested method. Look [rom diflerent viewpoints.

of the images to the registration objective functions. In our implementation we
defined the image-to-image MI [rom the chrominance components I and Q of
the YIQ color space. The image-to-image M1 is parameterized by the projective
transformations associated with both images, and it is maximized when both
images are aligned to the model. The gradient estimation follows the same pro-
cedure as for the image-to-model ML Fig. 5 and Fig. 6 show the refined final
registration results using the suggested approach.

In the refinement period of registration, the maximization of MI does not need
the existence of any 3D-2D feature information (including visible outlines in the
image) after self-initialized corvespondence. The refinement of global stochas-
tic optimization does not make assumptions on the unknown parameters of the
rendering function. It is robust Lo various illumination conditions and even to
occlusions. Compare to other registration algorithms, our accuracy is signifi-
cantly better than the one reported in [19], mean projection error of 5-6 pixels
for 3072 x 2304 pixel images. One restriction when using the MI objective fune-
tion is thal the value of the global maximuin cannotl be estimated. In contrast,
when registration is refined and further optimized with point correspondences,
for instance, the global optimumn corresponds to 0 projection error. The whole
soltware system has been implemented in Cpp language based on SUSE 10.3
Linux system. In Iig. 5, the full registration and refinement of six images takes
10 minutes using an AMD Athlon Dual-Core 4600+ 2GB PC.

6 Conclusions

In this paper, we have suggested a new approach for reliable and highly-automatic
multiple image registration using self~initialized geodesic feature correspondences.
To improve the robustness and automation of MI based multiple 2D/3D image
registration, the integration of sell-initialized geodesic fealure correspondence
can support accurate initial value for further global stochastic optimization based
maximization of MI. Furthermore, we have demonstrated that the normal maps
of the 3D model in scale space encode rich geometric information for geodesic
feature extraction, In particular, we have combined and utilized both advantages
from sparse features and entropy MI in an integrated framework. A thorough
evaluation and several high-fidelity registered 3D point based models show that
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the proposed approach has more flexibilities for highly-automatic and reliable
multiple iimage registration.
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