Skip to main content

Interactive Super-Resolution through Neighbor Embedding

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Included in the following conference series:

  • 1722 Accesses

Abstract

Learning based super-resolution can recover high resolution image with high quality. However, building an interactive learning based super-resolution system for general images is extremely challenging. In this paper, we proposed a novel GPU-based Interactive Super-Resolution system through Neighbor Embedding (ISRNE). Random projection tree (RPtree) with manifold sampling is employed to reduce the number of redundant image patches and balance the node size of the tree. Significant performance improvement is achieved through the incorporation of a refined GPU-based brute force kNN search with a matrix-multiplication-like technique. We demonstrate 200-300 times speedup of our proposed ISRNE system with experiments in both small size and large size images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lin, Z.C., He, J.F., Tang, X.O., Tang, C.K.: Limits of learning-based superresolution algorithm. In: Proceedings of IEEE CVPR, pp. 1–7 (2007)

    Google Scholar 

  2. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. International Journal of Computer Vision 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  3. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example based superresolution. IEEE Computer Graphics and Applications 22(2), 56–65 (2002)

    Article  Google Scholar 

  4. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of IEEE CVPR, pp. 275–282 (2004)

    Google Scholar 

  5. Wei, F., Yeung, D.Y.: Image hallucination using neighbor embedding over visual primitive manifolds. In: Proceedings of IEEE CVPR, pp. 1–7 (2007)

    Google Scholar 

  6. Yang, J.C., Wright, J., Ma, Y., Huang, T.: Image super-resolution as sparse representation of raw image patches. In: Proceedings of IEEE CVPR, pp. 1–8 (2008)

    Google Scholar 

  7. Su, K., Tian, Q., Xue, Q., Sebe, N., Ma, J.: Neighborhood issue in single-frame image super-resolution. In: Proceedings of IEEE ICME, pp. 1122–1125 (2005)

    Google Scholar 

  8. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes III, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Trans. Image Proc. 12(5), 597–606 (2003)

    Article  Google Scholar 

  9. Liu, C., Shum, H.Y., Freeman, W.T.: Face hallucination: Theory and practice. International Journal of Computer Vision 75(1), 115–134 (2007)

    Article  Google Scholar 

  10. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. PAMI 24(9), 1167–1183 (2002)

    Google Scholar 

  11. Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of manifolds using random projections. In: NIPS, pp. 473–480 (2008)

    Google Scholar 

  12. Dasgupta, S., Freund, Y.: Random projection trees and low dimensional manifolds. Technical Report CS2007-0890, UCSD (2007)

    Google Scholar 

  13. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using gpu. In: CVPR Workshop on Computer Vision on GPU, pp. 1–7 (2008)

    Google Scholar 

  14. Bishop, C.M., Blake, A., Marthi, B.: Super-resolution enhancement of video. In: Proceedings 9th International Conference on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  15. Liu, C., Shum, H.Y., Zhang, C.S.: A two-step approach to hallucinating faces: Global parametric model and local nonparametric model. In: Proceedings of IEEE CVPR, pp. 192–198 (2001)

    Google Scholar 

  16. Qiao, Y.L., Pan, J.S., Sun, S.H.: Improved partial distance search for k nearest-neighbor classification. In: Proceedings of IEEE ICME, vol. 2, pp. 1275–1278 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pu, J., Zhang, J., Guo, P., Yuan, X. (2010). Interactive Super-Resolution through Neighbor Embedding. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics