Skip to main content

Beyond Pairwise Shape Similarity Analysis

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Included in the following conference series:

Abstract

This paper considers two major applications of shape matching algorithms: (a) query-by-example, i. e. retrieving the most similar shapes from a database and (b) finding clusters of shapes, each represented by a single prototype. Our approach goes beyond pairwise shape similarity analysis by considering the underlying structure of the shape manifold, which is estimated from the shape similarity scores between all the shapes within a database. We propose a modified mutual kNN graph as the underlying representation and demonstrate its performance for the task of shape retrieval. We further describe an efficient, unsupervised clustering method which uses the modified mutual kNN graph for initialization. Experimental evaluation proves the applicability of our method, e. g. by achieving the highest ever reported retrieval score of 93.40% on the well known MPEG-7 database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(7), 1270–1281 (2008)

    Article  Google Scholar 

  2. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Ferrari, V., Tuytelaars, T., Gool, L.V.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Biederman, I., Ju, G.: Surface vs. edge-based determinants of visual recognition. Cognitive Psychology 20, 38–64 (1988)

    Article  Google Scholar 

  5. Gavrila, D.M.: A Bayesian, exemplar-based approach to hierarchical shape matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 29, 1408–1421 (2007)

    Article  Google Scholar 

  6. Weinland, D., Boyer, E.: Action recognition using exemplar-based embedding. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1–7 (2008)

    Google Scholar 

  7. Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph transduction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 788–801. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Yang, X., Koknar-Tezel, S., Latecki, L.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR (2009)

    Google Scholar 

  9. Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(2), 286–299 (2007)

    Article  Google Scholar 

  10. Schmidt, F.R., Farin, D., Cremers, D.: Fast matching of planar shapes in sub-cubic runtime. In: Proc. IEEE Intern. Conf. on Computer Vision, ICCV (2007)

    Google Scholar 

  11. Yankov, D., Keogh, E.: Manifold clustering of shapes. In: Proc. Intern. Conf. on Data Mining (ICDM), pp. 1167–1171 (2006)

    Google Scholar 

  12. McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 885–894 (2006)

    Google Scholar 

  13. Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR (2007)

    Google Scholar 

  14. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems (NIPS), pp. 1601–1608. MIT Press, Cambridge (2004)

    Google Scholar 

  15. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  16. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Intern. Journal of Computer Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  17. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(5), 550–571 (2004)

    Article  Google Scholar 

  18. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. In: Proc. of International Workshop on Image Databases and Multimedia Search, pp. 35–42 (1996)

    Google Scholar 

  19. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3, 583–617 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kontschieder, P., Donoser, M., Bischof, H. (2010). Beyond Pairwise Shape Similarity Analysis. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics