Abstract
In this paper, we present a face alignment approach using granular features, boosting, and an evolutionary search algorithm. Active Appearance Models (AAM) integrate a shape-texture-combined morphable face model into an efficient fitting strategy, then Boosting Appearance Models (BAM) consider the face alignment problem as a process of maximizing the response from a boosting classifier. Enlightened by AAM and BAM, we present a framework which implements improved boosting classifiers based on more discriminative features and exhaustive search strategies. In this paper, we utilize granular features to replace the conventional rectangular Haar-like features, to improve discriminability, computational efficiency, and a larger search space. At the same time, we adopt the evolutionary search process to solve the deficiency of searching in the large feature space. Finally, we test our approach on a series of challenging data sets, to show the accuracy and efficiency on versatile face images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cootes, T.F., Cooper, D.H., Taylor, C.J., Graham, J.: Trainable method of parametric shape description. Image and Vision Computing 10, 289–294 (1992)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active apperance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 681–685 (2001)
Zhou, Y., Gu, L., Zhang, H.J.: Bayesian tangent shape model: Estimating shape and pose parameters via Bayesian reference. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 109–116 (2003)
Lin, L., Fang, W., Ying-Qing, X., Xiaoou, T., Heung-Yeung, S.: Accurate face alignment using shape constrained Markov network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1313–1319 (2006)
Liu, X.: Generic face alignment using boosted appearance model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1–8 (2007)
Huang, C., Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 671–686 (2007)
Abramson, Y., Moutarde, F., Steux, B., Stanciulescu, B.: Combining adaboost with a hill-climbing evolutionary feature-search for efficient training of performant visual object detectors. In: Proceedings of the 7th International FLINS Conference on Applied Artificial Intelligence (2006)
Freund, Y., Schapire, R.: A decision-theoretic generaliation of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)
Fridman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. The Annals of Statistics 28, 337–374 (2000)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)
Treptow, A., Zell, A.: Combining adaboost learning and evolutionary search to select features for real-time object detection. In: Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 2107–2113 (2004)
Xiao, R., Zhu, H., Sun, H., Tang, X.: Dynamic cascade for face detection. In: Proceedings of IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)
Howard, D., Roberts, S.C., Brankin, R.: Evolution of ship detectors for satellite sar imagery. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 135–148. Springer, Heidelberg (1999)
Martinez, A.R., Benavente, R.: The AR face database. CVC Technical Report, vol. 24 (1998)
Philips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1615–1618 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, H., Liu, D., Poel, M., Nijholt, A. (2010). Face Alignment Using Boosting and Evolutionary Search. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-12304-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12303-0
Online ISBN: 978-3-642-12304-7
eBook Packages: Computer ScienceComputer Science (R0)