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Abstract. In this paper, we propose a convex optimization based apprém
piecewise planar reconstruction. We show that the taskasfingtructing a piece-
wise planar environment can be set in AR, based Homographic framework
that iteratively computes scene plane and camera pose egma@ninstead of
image points, the algorithm optimizes over inter-image bgraphies. The resul-
tant objective functions are minimized using Second OrdameCProgramming
algorithms. Apart from showing the convergence of the atbor, we also empir-
ically verify its robustness to error in initialization thugh various experiments
on synthetic and real data. We intend this algorithm to beeitwben initializa-
tion approaches like decomposition methods and iteratirelimear minimiza-
tion methods like Bundle Adjustment.

1 Introduction and Related Work

In this paper, we describe a convex optimization based agprfor piecewise planar re-
construction by optimizing inter-image homographies.siwork is motivated by both
the recent success of convex optimization based methodarious geometric prob-
lems like triangulation, resectioning [1, 2], and the aahblé sophistication in robust
estimation of homographies across views [2].

Convex optimization methods have achieved recent sucoes®iestimation of
various geometric quantities like homography, pose, 3bpadbud (triangulation) [1,
2] etc., and are even shown to be reasonably robust to ndiséH@re are even works
on outlier estimation and removal using convex optimiza{®] . On the other hand,
there also has been progress on robust estimation of hopligeafrom multiple views
of a scene plane [2]. However, even though homographieslsarba expressed as a
function of the camera pose, and can be decomposed using IB¥Bimilar manner
to fundamental matrices [4, 5], piecewise planar recootin as a 3D reconstruction
pipeline has not received much attention.

To this extent, we intend to develop an algorithm that can beedul “bridge” be-
tween SVD based initialization methods mentioned abovenamdlinear optimization
methods like Bundle Adjustment (BA). We focus on the itematieconstruction pro-
cess, that alternates between optimizing a six parameteersapose vector for each
view, and a four element plane parameter vector for eachespkme, by optimizing
over the resulting inter-image homographies.

We make the following contributions in this work. First, wetrioduce objective
functions for producing optimal estimates of pose and pfarameters, along the lines



of [2]. Then, we show how a Branch and Bound (BnB) algorithnyrna formulated
for the computation of optimal rotation between views [4].

Some of the recently proposed frameworks/og based quasi-convex cost func-
tions problems form the motivation for our work [1, 6], whigmme closely related
works include projective Bundle Adjustment (pBA) [7] and B#ith constraints [8].
However, we differ from these works in the kinds of objectfuactions minimized
(quasiconvex as opposed to non-linear) and in the quantitee optimize (homogra-
phies as opposed to 3D points). Recent study of bi-linedylprs also has relevance to
our work [9] since plane and pose parameters are combinethtegin a bi-linear form
in the expansion of a homography (Equation 1). However, thmdlation proposed
in [9] requires that the entire set of plane and pose parameted to be optimized
together. Also, estimation of rotation parameters becdnfeasible in such a scenario.
Thus we do not resort to a formulation along the lines of [9].

The rest of this paper is organized in the following mannect®n 2 sets the prob-
lem of pose estimation in a homographic framework and mtas/ghe need for the use
of optimization. Section 3 presents our solution and atharidetails. Experimental
analysis on synthetic and real-world sequences are donedtio 4 and finally, we
conclude with a discussion on future directions and apftioa in Sections 5.

2 SVD based I nitializations

Let there ben planes in the world, characterized by the parame{belrsdl, Cmmd™.
The j" plane is characterized by the parameters d’), wheren’ represents the nor-
mal of the plane and’ represents the perpendicular distance from world origgt. L
there be two cameras with external paramefe{9] and[R | t]. For simplicity, let us
assume that the internal parameters of the cameras areidentity (K = I). Thus the
homography induced by th&jplane between the two views [10] is given by
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Decomposition algorithms for obtaining camera pose andepteormals from ho-
mography matrix using Equation 1 are well known [11, 5]. Heamesince, the process
of pose computation from correspondences through the hoapbg matrix involves
two SVDs, a theoretical sensitivity analysis of such altjonis is difficult and approx-
imate [12]. Thus it is more advantageous to do an empiricadysbf the error in the
estimation of plane and pose parameters, given noise indroagespondences.

Figures(la-1c), depict the poor performance of one of th® ®%sed decomposi-
tion algorithms [5]. The experiments consisted of addirmgéasing amounts of noise to
a previously determined set of normalized image correspooels. Homographies ob-
tained after a standard RANSAC routine were then decomptoseltain estimates of
the plane and pose parameters. Variances are plotted aiggimisin pixel coordinates,
with a maximum variance of 5 pixels which corresponds to epipnately 1% of the
image size. As can be seen, translation and normal estinsatice adversely affected
by image noise. The errors for the other algorithm [11], wenailar.



The variances in Figures(1a) plot the errorin estimatiomtdtion parameters when
noise is introduced into the system. As is seen, the maximanmation of rotation pa-
rameters in the Euler angle space is 6 degrees, for as higheggaycent image noise.
Comparison with the translation and normal errors, whioh @ high as 40 degrees
in the polar space Figures(1b-1c), show that the deconiposilgorithm produces
much more robust estimates of rotation than either traioslair normal parameters.
This explains the greater need for better estimates oflatios and normal parameters
compared to that of rotation parameters that are much ctogeetactual values.
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Fig. 1: (a,b,c) Plot thd.2 and L, errors in the rotation angles, translation direction and no
mal direction respectively. Also are plotted the maximumoeranges for these quantities. The
translation and normal direction errors are computed adidean distances in polar space.

3 Optimization Framework

In this section, we describe our algorithm. First, we staithwhe simple case when
rotation is assumed known, and the rest of the parametergptiraized (Section 3.1).
The reason for this is the non-convexity of the orthonortgalonstraints of the rotation
matrix. Since algorithms for estimating the rotation athgaxist [4], and since we
have shown rotation parameters to be robustly recovered 89D decompositions as
compared to other parameters (Figure 1a), we treat rotaarately (Section 3.3).
Finally, in order to bring all the SVD decomposition estieginto a single coordinate
system, we describe a convex function in Section 3.2.

3.1 Formulation of the Objective Function

We wish to find plane and pose parameters that best fits Equatiwhich is non-
linear in terms of quantitie6R,, t, n’, d’) that need to be computed. However, observe
that when either the plane or the pose parameters are knaguatién 1 is linear in
the remaining unknowns. This simple fact is used to definejective function that
measures the geometric distance between the homographutedifrom plane/pose
parameters and the homography estimated from point canegmces. If the homog-
raphy matrix with varying pose parameters and fixed planampaters is defined as

Hrt) = {R '”; . } for the j/* plane then the corresponding objective function is

H f Hrtg
— Hj  Hrt)

Frit) = (2)



Similarly, when the plane parameters are allowed to varnf@ixpose parameters the
homography function i${nd’ = [dJ'RC - tcnjq and the objective function

8

H'  Hnd
Fina) = L - . (3)
; H}  Hnd)

(Re,te,nd, d%) are fixed and the optimization runs over free variables dmhby bold
letters. There are two important observations to make sipiint. Firstly, equations (2, 3)
are both linear fractional: both the numerator and denotuoireae affine in terms of the
unknowns. Secondly, it is possible to optimize all paramsdty alternatively minimiz-
ing Equation 2 and Equation 3 till convergence.

The proposed algorithm is a two step process. An initiaheste of the parameters
is acquired using SVD-based decomposition in the first. Hewestimates from SVD
decomposition in the first step do not all have the same seaterf Such estimates
need to be threaded together and brought down to a commoersaiscale before car-
rying out the optimization. This is done by minimizing théfelience between various
estimates of a single quantity as described in Section 3.2.

Subsequently, in the second step, this estimate is impiiowdoptimization frame-
work. However, minimizing Equation 2 without enforcing tbenstraints inherent to a
rotation matrix will not lead to a physically valid rotationatrix. Equation 2 fails to
be a linear fractional with rotation constraints enforcedplicating its minimization.
Hence, rotation is handled separately as explained in @e&ti3 and Equation 2 is
minimized by varying only the translation as in Step 7 of Aitjum 1.

The optimization takes advantage of the fact that the olbgéinctions are quasi-
convex and employs convex optimization techniques at niaiing them. Variableg!
and(n’, d’) are minimized in alternating iterations. Optimizationtbftakes into ac-
count information from all visible planes. Similarly, optization for (n?,d’) is done
with information from all views in which the plane is visibl&his two step process
ensures the quasiconvexity of the objective functions. ddraplete method is summa-
rized in Algorithm 1.

Algorithm 1 Complete Algorithm Summarized.

1: Input: Homographie§Hj forj =1,...,Jandk = 1,..., K of planell; between the
camera views P and reference vieWP = [I0].

k.
2: SVD-based decomposition: Decompddé; to get" R;, =, "n;.
J
3: Initialization:* R = median {*R;} andt = mediarj{*¢;}.
4: Set to universal scale: Assume each actu%l camera triansia be a unit vector in the direc-
tion of ; ie.||"t]| = 1. Let“G; = [FR — o2 ] and* G5 = (g1, 92,- ., 99)"
J J
5: Iterative Minimization:
6: XX {"H; —*G5} <o
7
8

Ei[jhi _ -{'gi]zwg =1,...,K.

Jhg T g9
kh.
D[ —
7~[kh9

Update(*t): (*t) = arg mink, max;_,

Update(n;, d;): (n;,d;) = arg miny,; 4 maxp_, %]QVj =1,...,J.




3.2 Universal Scale

Each decomposition by the algorithms of Faugeras [11] arahgH5] produces esti-
mates of R, ¢, n} assumingl (perpendicular distance of plane from origin) to be unity.
Thus estimates vary by a scale factor and need to be tied dowarsingle universal
scale which in the presence of noise has to be computed ugtimgipation.

Let the solutions of translation obtained by decomposin@dngraphyH{ be t{ .
Ideally, the actual translation is = tf d7. Since various estimates of the same quantity
must be consistent, we find an= [ty,to,. .., t;, d*, d?, ..., d™] T for which an error
| £ (2)] o is minimum.f (z) is a vector with elements of the sgt —t7d’ |i € [1,k],j €
[1,m]} stacked up. Optimal estimates are found by performing thémizationa* =
argming |f(z)|oc-

The considered error function is convex [13], made from thmpvise maximum
of the convex functior{t; — t/d’). An unconstrained optimization in this case could
lead to the trivial solution of all zeros for which is undesirable. To avoid this we
fix perpendicular distance of anyone of the planes (€8yto unity. This also sets the
overall scale of the minimization process.

3.3 Retrieving Rotation

Constraints inherent to rotations and normals like orthioradity constraints of the ro-

tation matrix are non-convex and do fit into a convex framéw8uch constraints have
been handled in the literature [4, 14] using under estinsaaod over estimators of the
non-convex function with a Branch and Bound algorithm. Weist handle rotation

separately rather than in the above optimization. We usgémaordinates of planes
available on the lines of [4] to solve for rotatidty of thei” view. The objective func-

tion to be minimized is

jT

Frit) = Find(R;, t) s.t. L(ng{, (R; — tf;—J)le) < €min 4)

which can be alternatively posed as

jT

Froey = Find(Ri,t;) st Z(HIx) Ry(1— ti"d—j)

XJ1) < Emin (5)
wherex{ are points from the'f plane in the first view. Arguments of bounds and in
general the branching strategy of [4] can now be incorpdrat the current frame-
work. The analysis that estimates of rotation from SVD-blasethods are more robust
than that of translations and normals as noted in Sectiom&ipally helps the idea of
handling rotation separately at a later stage. Figure 3wshbe performance of the
objective function described above in the presence of agryioise. Thel., norm in
angular space (roll-pitch-yaw) is plotted against inciegmounts of noise in image
pixels.



4 Experimental Analysis

In order to test the proposed algorithm, we have designeer@rpnts using SeDuMi [16]
on both synthetic and real-world data. Synthetic data isiobt by generating points
on planes and projecting them onto camera matrices. Re#d data sets tested include
the Oxford Model House, Corridor, and UNC datasets. In &sthcases, the real world
is assumed to be segmented into planes agr@interest points and hence correspon-
dences computed are assumed to be clustered into planesvEipthere are automatic
algorithms to achieve such a classification [15].

4.1 Synthetic Data

GenerationRandom points are generated on the XY-plane which is thgros&tioned
at a random location. Two random camera matrices are gexeaad the world points
of many such planes are projected using them to generateip@gts. Gaussian noise
of varying standard deviation is added to these image ptintseate synthetic corre-
spondence data. Homographies are then computed using tRER®@ after normaliza-
tion [10] which can alternatively be generated by [1]. Thegrated Homographies are
decomposed using Faugeras’ and Zhang's algorithms [1d, §herate data for both
initialization and comparison. Algorithm 1 is then run withis data, to produce our
estimate and is compared with the SVD-based algorithms amdli® Adjustment in
the 6-parameter pose space by plotting the euclidean distagtween estimated and
ground truth values.
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Fig. 2: Plot of L, and L., norms of the distance in pose space between estimated anddgro
truth quantities from Algorithm 1 against increase in vada of Gaussian error in point corre-
spondences. Comparison with the two SVD based methodswasho

Effect of noiseFigures (2a,2b) show the effect of increasing image noiséheraccu-
racy of estimation. Two observations can be made for botstadions and normals.
First, the average error in the estimation of both paramsasdess than 5 degrees even
for a 1% error in the image coordinates, which is a consideraimount of error. This
justifies the robustness of our algorithm to image noise.Sdw®nd observation is that
the mean errors (averaged for 100 trials) in all these casel®eated close to the min-
imum errors represented by the lower end of the error bar. 8¥econclude that most



of the estimations center around the mean, with only a feviadieg towards the higher

end. Another interesting observation is that even theieesie to noise is apparent till

about 3 pixel error after which the maximum error in both caseems to increase. This
can be attributed to the fact that after a point the algoriffossibly settles into a lo-

cal minima because of the inaccurate initialization. Hoevethis is still better than the

results of SVD-based methods in Figures 1b, 1c.

Comparison with Bundle Adjustme¥te empirically compare our algorithm with stan-
dard iterative non-linear optimization technique of Bumddjustment (BA) [17], which
uses Levenberg-Marquardtinternally. BA is initializedthg output of the SVD-based
approaches similar to ours. This initialization is used t@aimize the following error
over the normals and the translations

(Rotonyd)=arg min 303 YN 2 A, ©)
RS RN ERY ] kR,kt,nj,dj - I - hg ETAQE
wheres = (YRS,... KRS, 4T . KT 0T .. 0T dy, ..., dy) andA; is a matrix

s.t.aT A;z = g; and® is x with the initial SVD estimates ofR, ¥¢,n;, d; substituted.
The improvement in translations is shown in Fig (3a) and ¢fiatormals in Fig (3b).
They are shown for varying levels of variance each of whick been tested for 100
trials. They clearly show our algorithm performing bettean BA.
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Fig. 3: (a-b)Plot ofL> norm of the distance in pose space between estimated anddytatih
quantities from Algorithm 1 and Bundle adjustment agaimstéase in variance of Gaussian
error in point correspondences.(c) Error in recovery oftion parameters using the objective
function of Section 3.3

Effect of planes and views$-igures (4a,4c,4b,4d) show the effect of the number of
planes and views on the performance of the algorithm. Conteeintuition, increasing
the number of planes does not seem to have much effect oncheay of the estimates
of translation parameters. On the other hand, increasimgtimber of views increases
the parameter size, and the accuracy of translation egtfltindles since the number
of planes and hence, measurements is kept constant. Ingeeo€aormals, however,
increasing the number of views results in a marked improverirethe accuracy of
their estimates.
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Fig. 4: The above figures plot the effect of planes and viewtheraccuracy in estimation of the
translation and normal parameters. First two figures pletdfiect on translations and last two
plot the effect on normals. For the experiment with incregglanes, the number of views was
kept constant at 10, and that for views, the number of plarasssst to be 3.
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Fig.5: Sample images of scenes reconstructed using ounagpr (House(a), Corridor(b),
synthetic(c-d), UNC((e-f))). (g-h) illustrates the acacy of our reconstruction, the ground truth
and reconstructed models are overlapping. (i-j) Texturpped UNC reconstructions
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Fig. 6: Plots of the., error between plane and pose parameters with respect toedhedjtruth,
for the House and Corridor sequende error shows similar plots. Y-axis of plots (a),(b),(c) and
(d) is the angular error in radians, X-axis of (a) and (c) is tumber of views, where as X-axis
of (b) and (d) is the number of planes. In the plots (a),(ba(d (d), dotted curve represents the
Faugeras initialization and other curve represents ourcemh

4.2 Real Data

In order to test on data from the real-world, we chose two @xkidata sets and the
UNC data set. The House, and Corridor data sets (FigureSipaare accompanied
by correspondences and estimates of the camera matricis thnUNC data set only
comprises camera matrices.

Figures 6a-6b show the comparison between our estimatiohat of the decom-
position of Faugeras for the Oxford data sets. Theand L, errors between the esti-
mated and ground truth quantities are plotted. In order tofgare normals, we took the
best estimate of normals from the available decompositidasan be seen from the
plots, estimates of translation from our algorithm are feitér than the corresponding
algorithm by Faugeras. We found that Zhang’s algorithm poed estimates similar to
that of Faugeras’ algorithm in most cases. The same situsti@peated in the Corridor
sequence (Figures 6c¢c-6d), where translation is very atelyrabtained. An explanation
of why certain plane parameters are “perturbed” by a highrer & that some of the ho-
mographies are erroneous and the error in a particularlyhloadography is distributed
across planes. Finally, the UNC data set (Figures 5i,5vghe visual accuracy of our
reconstruction.

5 Discussion and Conclusion

We proposed a framework that reconstructs piecewise pkoeres in much the same
way as Bundle Adjustment for point sets. The algorithm ipooates both multiple
planes and views and does not constrain all the planes tcsii#erin any single view.
This makes it a useful bridge between initialization apphes and non-linear mini-
mization methods

The existing framework is not without its drawbacks. Cuthgrihough the objec-
tive functions show robustness to noise, it does not worly wasll in the presence of
outliers. Existing literature in convex optimization thHzdndles outliers may be used
for this purpose [3]. Similarly, uncertainty of corresp@mtes can also be handled with
techniques like [18]. Secondly, constraibtstweerplanes like orthogonality may help
in stabilizing the overall reconstruction [8]. One othesus related to this algorithm



is its practical applicability. Recent results reported6n19] are very relevant to our
work and may be used to improve the run time of our algorithrakimg it suitable
for faster computation required by videos. We believe thatoarrent contribution lays
down a useful framework for practically viable optimizatiover planes, and wish to
investigate further into its use for large scale optimiaati
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