Skip to main content

Twisted Cubic: Degeneracy Degree and Relationship with General Degeneracy

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5995))

Included in the following conference series:

  • 2726 Accesses

Abstract

Fundamental matrix, drawing geometric relationship between two images, plays an important role in 3-dimensional computer vision. Degenerate configurations of space points and two camera optical centers affect stability of computation for fundamental matrix. In order to robustly estimate fundamental matrix, it is necessary to study these degenerate configurations. We analyze all possible degenerate configurations caused by twisted cubic and give the corresponding degenerate rank for each case. Relationships with general degeneracies, the previous ruled quadric degeneracy and the homography degeneracy, are also reported in theory, where some interesting results are obtained such as a complete homography relation between two views. Based on the result of the paper, by applying RANSAC for degenerate data, we could obtain more robust estimations for fundamental matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartoli, A., Sturm, P.: Non-linear estimation of the fundamental matrix with minimal parameters. Pattern Analysis and Machine Intelligence 26, 426–432 (2004)

    Article  Google Scholar 

  2. Bober, M., Georgis, N., Kittler, J.: On accurate and robust estimation of fundamental matrix. Computer Vision and Image Understanding 72, 39–53 (1998)

    Article  Google Scholar 

  3. Frahm, J., Pollefeys, M.: Ransac for (quasi-)degenerate data (qdegsac). Computer Vision and Pattern Recognition 1, 453–456 (2006)

    Google Scholar 

  4. Hartley, R.: In defense of the eight-point algorithm. Pattern Analysis and Machine Intelligence 19, 580–593 (1997)

    Article  Google Scholar 

  5. Luong, Q.T., Faugeras, O.: The fundamental matrix: Theory, algorithms, and stability analysis. International Journal of Computer Vision 17, 43–76 (1996)

    Article  Google Scholar 

  6. Torr, P.H.S., Murray, D.W.: The development and comparison of robust methods for estimating the fundamental matrix. International Journal of Computer Vision 23, 271–300 (1997)

    Article  Google Scholar 

  7. Torr, P.H.S., Zisserman, A., Maybank, S.J.: Robust detection of degenerate configurations while estimating the fundamental matrix. Computer Vision and Image Understanding 71, 312–333 (1998)

    Article  Google Scholar 

  8. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. International Journal of Computer Vision 27, 161–195 (1998)

    Article  Google Scholar 

  9. Huang, T.S., Ahuja, J.N.: Motion and structure from two perspective views: algorithms, error analysis, and error estimation. Pattern Analysis and Machine Intelligence 11, 451–476 (1989)

    Article  Google Scholar 

  10. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. Computer vision and Pattern recognition, 772–779 (2005)

    Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Buchanan, T.: The twisted cubic and camera calibration. Computer Vision, Graphics and Image 42, 130–132 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wu, Y., Li, Y., Hu, Z.: Detecting and handling unreliable points for camera parameter estimation. International Journal of Computer Vision 79, 209–223 (2008)

    Article  Google Scholar 

  14. Maybank, S.: Theory of reconstruction from image motion. Springer, Heidelberg (1992)

    Google Scholar 

  15. Luong, Q.T., Faugeras, O.: A stability analysis of the fundamental matrix. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 577–588. Springer, Heidelberg (1994)

    Google Scholar 

  16. Hartley, R.: Ambiguous configurations for 3-view projective reconstruction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 922–935. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Hartley, R., Kahl, F.: Critical configurations for projective reconstruction from multiple views. International Journal of Computer Vision 71, 5–47 (2006)

    Article  Google Scholar 

  18. Maybank, S., Shashua, A.: Ambiguity in reconstruction from images of six points. In: International Conference on Computer Vision, pp. 703–708 (1992)

    Google Scholar 

  19. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  20. Semple, J.G., Kneebone, G.T.: Algebraic projective geometry. Oxford University, Oxford (1952)

    MATH  Google Scholar 

  21. Kahl, F., Henrion, D.: Globally optimal estimates for geometric reconstruction problems. International Journal of Computer Vision 74, 3–15 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lan, T., Wu, Y., Hu, Z. (2010). Twisted Cubic: Degeneracy Degree and Relationship with General Degeneracy. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12304-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12303-0

  • Online ISBN: 978-3-642-12304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics