Skip to main content

A Probabilistic Population Study of the Conficker-C Botnet

  • Conference paper
Passive and Active Measurement (PAM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 6032))

Included in the following conference series:

Abstract

We estimate the number of active machines per hour infected with the Conficker-C worm, using a probability model of Conficker-C’s UDP P2P scanning behavior. For an observer with access to a proportion δ of monitored IPv4 space, we derive the distribution of the number of times a single infected host is observed scanning the monitored space, based on a study of the P2P protocol, and on network and behavioral variability by relative hour of the day. We use these distributional results in conjunction with the Lévy form of the Central Limit Theorem to estimate the total number of active hosts in a single hour. We apply the model to observed data from Conficker-C scans sent over a 51-day period (March 5th through April 24th, 2009) to a large private network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: My botnet is bigger than yours (maybe, better than yours): Why size estimates remain challenging. In: Proceedings of the First Annual Workshop on Hot Topics in Botnets (March 2007)

    Google Scholar 

  2. Casella, G., Berger, R.: Statistical Inference. Duxbury Press, Boston (1990)

    MATH  Google Scholar 

  3. Chan, M., Hamdi, M.: An active queue management scheme based on a capture-recapture model. IEEE Journal on Selected Areas in Communications 21(4), 572–583 (2003)

    Article  Google Scholar 

  4. Dupuis, J., Schwarz, C.: A Bayesian approach to the multistate Jolly-Seber capture-recapture model. Biometrics 63, 1015–1022 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Faber, S.: Silk Conficker. C Plug-in (2009), CERT Code release, http://tools.netsa.cert.org/wiki/display/tt/SiLK+Conficker.C+Plugin

  6. Fienberg, S., Johnson, M., Junker, B.: Classical multilevel and bayesian approaches to population size estimation using multiple lists. Journal of the Royal Statistical Society: Series A 162(3), 383–405 (1999)

    Google Scholar 

  7. Fitzgibbon, N., Wood, M.: Conficker.C: A technical analysis (March 2009), Sophos white paper, http://www.sophos.com/sophos/docs/eng/marketing_material/conficker-analysis.pdf

  8. Horowitz, K., Malkhi, D.: Estimating network size from local information. Information Processing Letters 88, 237–243 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, Z., Goyal, A., Chen, Y., Paxson, V.: Automating analysis of large-scale botnet probing events. In: ASAICCS 2009 (March 2009)

    Google Scholar 

  10. Mane, S., Mopuru, S., Mehra, K., Srivastava, J.: Network size estimation in a peer-to-peer network. Tech. Rep. TR 05-030, University of Minnesota Department of Computer Science and Engineering (2005)

    Google Scholar 

  11. McAfee: Conficker.C over the wire. McAfee Network Security blog publication (March 2009), http://www.avertlabs.com/research/blog/index.php/2009/04/01/confickerc-on-the-wire-2

  12. Paxson, V., Floyd, S.: Wide-area traffic: The failure of poisson modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)

    Article  Google Scholar 

  13. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C Actived P2P scanner. SRI international Code release/document (2009), http://www.mtc.sri.com/Conficker/contrib/scanner.html

  14. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C analysis. Tech. rep., SRI International (2009)

    Google Scholar 

  15. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C P2P protocol and implementation. Tech. rep., SRI International (2009)

    Google Scholar 

  16. Psaltoulis, D., Kostoulas, D., Gupta, I., Briman, K., Demers, A.: Decentralized schemes for size estimation in large and dynamic groups. Tech. Rep. UIUCDCS-R-2005-2524, University of Illinois Department of Computer Science (2005)

    Google Scholar 

  17. Schwarz, C., Arnason, A.: A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52(3), 860–873 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Taylor, H., Karlin, S.: An Introduction to Stochastic Modeling. Academic Press, London (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weaver, R. (2010). A Probabilistic Population Study of the Conficker-C Botnet. In: Krishnamurthy, A., Plattner, B. (eds) Passive and Active Measurement. PAM 2010. Lecture Notes in Computer Science, vol 6032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12334-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12334-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12333-7

  • Online ISBN: 978-3-642-12334-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics