Skip to main content

Part of the book series: Geometry and Computing ((GC,volume 5))

Abstract

Stereoscopic cinema has seen a surge of activity in recent years, and for the first time all of the major Hollywood studios released 3-D movies in 2009. This is happening alongside the adoption of 3-D technology for sports broadcasting, and the arrival of 3-D TVs for the home. Two previous attempts to introduce 3-D cinema in the 1950s and the 1980s failed because the contemporary technology was immature and resulted in viewer discomfort. But current technologies – such as accurately-adjustable 3-D camera rigs with onboard computers to automatically inform a camera operator of inappropriate stereoscopic shots, digital processing for post-shooting rectification of the 3-D imagery, digital projectors for accurate positioning of the two stereo projections on the cinema screen, and polarized silver screens to reduce cross-talk between the viewers left- and right-eyes – mean that the viewer experience is at a much higher level of quality than in the past. Even so, creation of stereoscopic cinema is an open, active research area, and there are many challenges from acquisition to post-production to automatic adaptation for different-sized display. This chapter describes the current state-of-the-art in stereoscopic cinema, and directions of future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, S., Förstner, W.: Fish-eye-stereo calibration and epipolar rectification. ISPRS J. Photogramm. Remote Sens. 59(5), 278–288 (2005). doi:10.1016/j.isprsjprs.2005.03.001

    Article  Google Scholar 

  2. Akeley, K., Watt, S.J., Girshick, A.R., Banks, M.S.: A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23(3), 804–813 (2004). doi:10.1145/1015706.1015804

    Article  Google Scholar 

  3. Allison, R.S.: The camera convergence problem revisited. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, pp. 167–178 (2004). doi:10.1117/12.526278. http://www.cse.yorku.ca/percept/papers/Allison-Cameraconvergenceproblemrevisited.pdf

  4. Allison, R.S.: Analysis of the influence of vertical disparities arising in toed-in stereoscopic cameras. J. Imaging Sci. Technol. 51(4), 317–327 (2007). http://www.cse.yorku.ca/percept/papers/jistpaper.pdf

  5. Allison, R.S., Rogers, B.J., Bradshaw, M.F.: Geometric and induced effects in binocular stereopsis and motion parallax. Vision Res. 43, 1879–1893 (2003). doi:10.1016/S0042-6989(03)00298-0. http://www.cse.yorku.ca/percept/papers/Allison-Geometric_and_induced_effects.pdf

    Google Scholar 

  6. Barreto, J.P., Daniilidis, K.: Fundamental matrix for cameras with radial distortion. In: Proc. ICCV (2005). doi:10.1109/ICCV.2005.103. http://www.cis.upenn.edu/~kostas/mypub.dir/barreto05iccv.pdf

  7. Bertalmio, M., Fort, P., Sanchez-Crespo, D.: Real-time, accurate depth of field using anisotropic diffusion and programmable graphics cards. In: Proc. 2nd Intl. Symp. on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 767–773 (2004). doi:10.1109/TDPVT.2004.1335393

    Google Scholar 

  8. Blake, A., Bülthoff, H.: Does the brain know the physics of specular reflection? Nature 343(6254), 165–168 (1990). doi:10.1038/343165a0

    Article  Google Scholar 

  9. Blake, A., Bulthoff, H.: Shape from specularities: computation and psychophysics. Philos Trans R Soc London B Biol Sci 331(1260), 237–252 (1991). doi:10.1098/rstb.1991.0012

    Article  Google Scholar 

  10. Bleyer, M., Gelautz, M., Rother, C., Rhemann, C.: A stereo approach that handles the matting problem via image warping. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2009). doi:10.1109/CVPRW.2009.5206656. http://research.microsoft.com/pubs/80301/CVPR09_StereoMatting.pdf

  11. Bordwell, D.: Coraline, cornered (2009). http://www.davidbordwell.net/blog/?p=3789. Accessed 10 Jun 2009, archived at http://www.webcitation.org/5nFFuaq3f

  12. Campbell, F.W.: The depth of field of the human eye. J. Mod. Opt. 4(4), 157–164 (1957). doi:10.1080/713826091

    Article  Google Scholar 

  13. Chabert, C.F., Einarsson, P., Jones, A., Lamond, B., Ma, W.C., Sylwan, S., Hawkins, T., Debevec, P.: Relighting human locomotion with flowed reflectance fields. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches, p. 76. ACM, New York, NY, USA (2006). doi:10.1145/1179849.1179944. http://gl.ict.usc.edu/research/RHL/SIGGRAPHsketch_RHL_0610.pdf

  14. Cheng, C.M., Lai, S.H., Su, S.H.: Self image rectification for uncalibrated stereo video with varying camera motions and zooming effects. In: Proc. IAPR Conference on Machine Vision Applications (MVA). Yokohama, Japan (2009). http://www.mva-org.jp/Proceedings/2009CD/papers/02-03.pdf

  15. Criminisi, A., Blake, A., Rother, C., Shotton, J., Torr, P.H.: Efficient dense stereo with occlusions for new view-synthesis by four-state dynamic programming. Int. J. Comput. Vis. 71(1), 89–110 (2007). doi:10.1007/s11263-006-8525-1

    Article  Google Scholar 

  16. Debevec, P., Wenger, A., Tchou, C., Gardner, A., Waese, J., Hawkins, T.: A lighting reproduction approach to live-action compositing. ACM Trans. Graph. (Proc. ACM SIGGRAPH 2002) 21(3), 547–556 (2002). doi:http://doi.acm.org/10.1145/566654.566614

  17. Emoto, M., Niida, T., Okano, F.: Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. J. Disp. Technol. 1(2), 328–340 (2005). doi:10.1109/JDT.2005.858938. http://www.nhk.or.jp/strl/publica/labnote/pdf/labnote501.pdf

    Google Scholar 

  18. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 125–132 (2001). doi:10.1109/CVPR.2001.990465. http://www.robots.ox.ac.uk/~vgg/publications/papers/fitzgibbon01b.pdf

  19. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, New York (2003)

    Google Scholar 

  20. Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12, 16–22 (2000)

    Article  Google Scholar 

  21. Gorley, P., Holliman, N.: Stereoscopic image quality metrics and compression. In: Woods, A.J., Holliman, N.S., Merritt, J.O. (eds.) Proc. SPIE Stereoscopic Displays and Applications XIX, vol. 6803, p. 680305. SPIE (2008). doi:10.1117/12.763530. http://www.dur.ac.uk/n.s.holliman/Presentations/SDA2008_6803-03.PDF

  22. Gosser, H.M.: Selected Attempts at Stereoscopic Moving Pictures and Their Relationship to the Development of Motion Picture Technology, 1852–1903. Ayer, Salem, NH (1977)

    Google Scholar 

  23. Hartley, R.: Theory and practice of projective rectification. Int. J. Comput. Vis. 35, 115–127 (1999)

    Article  Google Scholar 

  24. Hartley, R., Zisserman, A.: Multiple-View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  25. Hasinoff, S.W., Kang, S.B., Szeliski, R.: Boundary matting for view synthesis. Comput. Vis. Image Underst. 103(1), 22–32 (2006). doi:10.1016/j.cviu.2006.02.005. http://www.cs.toronto.edu/~hasinoff/pubs/hasinoff-matting-2005.pdf

  26. Held, R.T., Cooper, E.A., O’Brien, J.F., Banks, M.S.: Using blur to affect perceived distance and size. In: ACM Trans. Graph. 29(2), 1–16. ACM, New York, USA (2010). 0730–0301. doi:acm.org/10.1145/1731047.1731057

    Google Scholar 

  27. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 1–30 (2008). doi:10.1167/8.3.33

    Article  Google Scholar 

  28. Hummel, R.: 3-D cinematography. American Cinematographer Manual, pp. 52–63. American Society of Cinematographers, Hollywood, CA (2008)

    Google Scholar 

  29. Jones, G.R., Holliman, N.S., Lee, D.: Stereo images with comfortable perceived depth. US Patent 6798406 (2004). http://www.google.com/patents?vid=USPAT6798406

  30. Kakimoto, M., Tatsukawa, T., Mukai, Y., Nishita, T.: Interactive simulation of the human eye depth of field and its correction by spectacle lenses. Comput. Graph. Forum 26(3), 627–636 (2007). doi:10.1111/j.1467-8659.2007.01086.x. http://nis-lab.is.s.u-tokyo.ac.jp/~nis/abs_eg.html

  31. Kilner, J., Starck, J., Hilton, A.: A comparative study of free-viewpoint video techniques for sports events. In: Proc. 3rd European Conference on Visual Media Production, pp. 87–96. London, UK (2006). http://www.ee.surrey.ac.uk/CVSSP/VMRG/Publications/kilner06cvmp.pdf

  32. Kooi, F.L., Toet, A.: Visual comfort of binocular and 3D displays. Displays 25(2–3), 99–108 (2004). doi:10.1016/j.displa.2004.07.004

    Article  Google Scholar 

  33. Kozachik, P.: 2 worlds in 3 dimensions. American Cinematographer 90(2), 26 (2009)

    Google Scholar 

  34. Lambooij, M.T.M., IJsselsteijn, W.A., Heynderickx, I.: Visual discomfort in stereoscopic displays: a review. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems XIV, vol. 6490 (2007). doi:10.1117/12.705527

    Google Scholar 

  35. Lin, H.Y., Gu, K.D.: Photo-realistic depth-of-field effects synthesis based on real camera parameters. In: Advances in Visual Computing (ISVC 2007), Lecture Notes in Computer Science, vol. 4841, pp. 298–309. Springer, Berlin (2007). doi:10.1007/978-3-540-76858-6_30

    Google Scholar 

  36. Lipton, L.: Foundations of the Stereoscopic Cinema. Van Nostrand Reinhold, New York (1982)

    Google Scholar 

  37. Lipton, L.: The stereoscopic cinema: from film to digital projection. SMPTE J. 586–593 (2001)

    Google Scholar 

  38. Loop, C., Zhang, Z.: Computing rectifying homographies for stereo vision. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. –131 Vol. 1 (1999). doi:10.1109/CVPR.1999.786928. http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

  39. Marcos, S., Moreno, E., Navarro, R.: The depth-of-field of the human eye from objective and subjective measurements. Vision Res. 39(12), 2039–2049 (1999). doi:10.1016/S0042-6989(98)00317-4

    Article  Google Scholar 

  40. Masaoka, K., Hanazato, A., Emoto, M., Yamanoue, H., Nojiri, Y., Okano, F.: Spatial distortion prediction system for stereoscopic images. J. Electron. Imaging 15(1) (2006). doi:10.1117/1.2181178. http://www.nhk.or.jp/strl/publica/labnote/pdf/labnote505.pdf

    Google Scholar 

  41. Mendiburu, B.: 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal, Oxford (2009)

    Google Scholar 

  42. Micusik, B., Pajdla, T.: Estimation of omnidirectional camera model from epipolar geometry. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 485–490 (2003). doi:10.1109/CVPR.2003.1211393. ftp://cmp.felk.cvut.cz/pub/cmp/articles/micusik/Micusik-CVPR2003.pdf

  43. Ogle, K.N.: Induced size effect: I. A new phenomenon in binocular space perception associated with the relative sizes of the images of the two eyes. Am. Med. Assoc. Arch. Ophthalmol. 20, 604–623 (1938). http://www.cns.nyu.edu/events/vjclub/classics/ogle-38.pdf

    Google Scholar 

  44. Ogle, K.N.: Researches in Binocular Vision. Hafner, New York (1964)

    Google Scholar 

  45. Park, J.I., Um, G.M., Ahn, C., Ahn, C.: Virtual control of optical axis of the 3DTV camera for reducing visual fatigue in stereoscopic 3DTV. ETRI J. 26(6), 597–604 (2004)

    Article  Google Scholar 

  46. Pastoor, S.: Human factors of 3DTV: an overview of current research at Heinrich-Hertz-Institut Berlin. In: IEE Colloquiumon Stereoscopic Television, pp. 11/1–11/4. London (1992). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=193706

  47. Read, J.C.A., Cumming, B.G.: Does depth perception require vertical-disparity detectors? J. Vis. 6(12), 1323–1355 (2006). doi:10.1167/6.12.1. http://journalofvision.org/6/12/1

    Google Scholar 

  48. Rogers, B.J., Bradshaw, M.F.: Vertical disparities, differential perspective and binocular stereopsis. Nature 361, 253–255 (1993). doi:10.1038/361253a0. http://www.cns.nyu.edu/events/vjclub/classics/rogers-bradshaw-93.pdf

  49. Rogmans, S., Lu, J., Bekaert, P., Lafruit, G.: Real-time stereo-based view synthesis algorithms: a unified framework and evaluation on commodity gpus. Signal Process. Image Commun. 24(1–2), 49–64 (2009). doi:10.1016/j.image.2008.10.005. http://www.sciencedirect.com/science/article/B6V08-4TT34BC-3/2/03a35e44fbc3c0f7ff19fcdbe474f73a. Special issue on advances in three-dimensional television and video

  50. Seuntiens, P., Meesters, L., Ijsselsteijn, W.: Perceived quality of compressed stereoscopic images: effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans. Appl. Percept. 3(2), 95–109 (2009). doi:10.1145/1141897.1141899

    Article  Google Scholar 

  51. Sexton, I., Surman, P.: Stereoscopic and autostereoscopic display systems. IEEE Signal Process. Mag. 16(3), 85–99 (1999). doi:10.1109/79.768575

    Article  Google Scholar 

  52. Sizintsev, M., Wildes, R.P.: Coarse-to-fine stereo vision with accurate 3D boundaries. Image Vis. Comput. 28(3), 352 – 366 (2010). doi:10.1016/j.imavis.2009.06.008. http://www.cse.yorku.ca/techreports/2006/CS-2006-07.pdf

  53. Smith, C., Benton, S.: reviews of Foundations of the stereoscopic cinema by Lenny Lipton. Opt. Eng. 22(2) (1983). http://www.3dmagic.com/Liptonreviews.htm

  54. Smolic, A., Kimata, H., Vetro, A.: Development of MPEG standards for 3D and free viewpoint video. Tech. Rep. TR2005-116, MERL (2005). http://www.merl.com/papers/docs/TR2005-116.pdf

  55. Speranza, F., Stelmach, L.B., Tam, W.J., Glabb, R.: Visual comfort and apparent depth in 3D systems: effects of camera convergence distance. In: Proc. SPIE Three-Dimensional TV, Video and Display, vol. 4864, pp. 146–156. SPIE (2002). doi:10.1117/12.454900

    Google Scholar 

  56. Spottiswoode, R., Spottiswoode, N.L., Smith, C.: Basic principles of the three-dimensional film. SMPTE J. 59, 249–286 (1952). http://www.archive.org/details/journalofsociety59socirich

    Google Scholar 

  57. Steele, R.M., Jaynes, C.: Overconstrained linear estimation of radial distortion and multi-view geometry. In: Proc. ECCV (2006). doi:10.1007/11744023_20

    Google Scholar 

  58. Stelmach, L., Tam, W., Meegan, D., Vincent, A., Corriveau, P.: Human perception of mismatched stereoscopic 3D inputs. In: International Conference on Image Processing (ICIP), vol. 1, pp. 5–8 (2000). doi:10.1109/ICIP.2000.900878

    Google Scholar 

  59. Stelmach, L.B., Tam, W.J., Speranza, F., Renaud, R., Martin, T.: Improving the visual comfort of stereoscopic images. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems X, vol. 5006, pp. 269–282 (2003). doi:10.1117/12.474093

    Google Scholar 

  60. The Stereographics Developer’s Handbook – Background on Creating Images for CrystalEyes®; and SimulEyes®;. (1997). http://www.reald-corporate.com/scientific/downloads/handbook.pdf

  61. Stevenson, S.B., Schor, C.M.: Human stereo matching is not restricted to epipolar lines. Vision Res. 37(19), 2717–2723 (1997). doi:10.1016/S0042-6989(97)00097-7

    Article  Google Scholar 

  62. Sun, G., Holliman, N.: Evaluating methods for controlling depth perception in stereoscopic cinematography. In: Proc. SPIE Stereoscopic Displays and Applications XX, vol. 7237 (2009). doi:10.1117/12.807136. http://www.dur.ac.uk/n.s.holliman/Presentations/SDA2009-Sun-Holliman.pdf

  63. Taguchi, Y., Wilburn, B., Zitnick, C.: Stereo reconstruction with mixed pixels using adaptive over-segmentation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2720–2727 (2008). doi:10.1109/CVPR.2008.4587691. http://research.microsoft.com/users/larryz/StereoMixedPixels_CVPR2008.pdf

  64. Todd, J.T.: The visual perception of 3D shape. Trends Cogn. Sci. 8(3), 115–121 (2004). doi:10.1016/j.tics.2004.01.006

    Article  Google Scholar 

  65. Todd, J.T., Norman, J.F.: The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure? Percept. Psychophys. 65(1), 31–47 (2003). http://app.psychonomic-journals.org/content/65/1/31.abstract

    Google Scholar 

  66. Ukai, K., Howarth, P.A.: Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations. Displays 29(2), 106–116 (2007). doi:10.1016/j.displa.2007.09.004

    Article  Google Scholar 

  67. Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic inpainting: joint color and depth completion from stereo images. In: CVPR 2008 – IEEE Computer Socitey conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008). doi:10.1109/CVPR.2008.4587704

    Google Scholar 

  68. Wann, J.P., Mon-Williams, M.: Health issues with virtual reality displays: what we do know and what we don’t. ACM SIGGRAPH Comput. Graph. 31(2), 53–57 (1997)

    Article  Google Scholar 

  69. Wann, J.P., Rushton, S., Mon-Williams, M.: Natural problems for stereoscopic depth perception in virtual environments. Vision Res. 35(19), 2731–2736 (1995). doi:10.1016/0042-6989(95)00018-U

    Article  Google Scholar 

  70. Watt, S.J., Akeley, K., Ernst, M.O., Banks, M.S.: Focus cues affect perceived depth. J. Vis. 5(10), 834–862 (2005). doi:10.1167/5.10.7. http://journalofvision.org/5/10/7/

    Article  Google Scholar 

  71. Woodford, O., Reid, I.D., Torr, P.H.S., Fitzgibbon, A.W.: On new view synthesis using multiview stereo. In: Proceedings of the 18th British Machine Vision Conference, vol. 2, pp. 1120–1129. Warwick (2007). http://www.robots.ox.ac.uk/~ojw/stereo4nvs/Woodford07a.pdf

  72. Woods, A., Docherty, T., Koch, R.: Image distortions in stereoscopic video systems. In: Proc. SPIE Stereoscopic Displays and Applications IV, vol. 1915, pp. 36–48. San Jose, CA (1993). doi:10.1117/12.157041. http://www.cmst.curtin.edu.au/publicat/1993-01.pdf

  73. Wu, H.H.P., Chen, C.C.: Scene reconstruction pose estimation and tracking. In: Projective Rectification with Minimal Geometric Distortion, chap. 13, pp. 221–242. I-Tech Education and Publishing, Vienna (2007). http://intechweb.org/book.php?id=10

  74. Xiong, W., Chung, H., Jia, J.: Fractional stereo matching using expectation-maximization. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 428–443 (2009). doi:10.1109/TPAMI.2008.98. http://www.cse.cuhk.edu.hk/~leojia/all_final_papers/pami_stereo08.pdf

    Google Scholar 

  75. Xiong, W., Jia, J.: Stereo matching on objects with fractional boundary. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007). doi:10.1109/CVPR.2007.383194. http://www.cse.cuhk.edu.hk/~leojia/all_final_papers/alpha_stereo_cvpr07.pdf

  76. Yamanoue, H., Okui, M., Okano, F.: Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images. IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006). doi:10.1109/TCSVT.2006.875213

    Article  Google Scholar 

  77. Yano, S., Emoto, M., Mitsuhashi, T.: Two factors in visual fatigue caused by stereoscopic HDTV images. Displays 25, 141–150 (2004). doi:10.1016/j.displa.2004.09.002

    Article  Google Scholar 

  78. Yeh, Y.Y., Silverstein, L.D.: Limits of fusion and depth judgment in stereoscopic color displays. Hum. Factors 32(1), 45–60 (1990)

    Google Scholar 

  79. Zhou, J., Li, B.: Rectification with intersecting optical axes for stereoscopic visualization. Proc. ICPR 2, 17–20 (2006). doi:10.1109/ ICPR.2006.986

    Google Scholar 

  80. Zitnick, C.L., Kang, S.B., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality video view interpolation using a layered representation. In: Proc. ACM SIGGRAPH, vol. 23, pp. 600–608. ACM, New York, NY, USA (2004). doi:10.1145/1015706.1015766. http://research.microsoft.com/~larryz/ZitnickSig04.pdf

  81. Zitnick, C.L., Szeliski, R., Kang, S.B., Uyttendaele, M.T., Winder, S.: System and process for generating a two-layer, 3D representation of a scene. US Patent 7015926 (2006). http://www.google.com/patents?vid=USPAT7015926

  82. Zone, R.: 3-D fimmakers : Conversations with Creators of Stereoscopic Motion Pictures. The Scarecrow Fimmakers Series, No. 119. Scarecrow, Lanham, MD (2005)

    Google Scholar 

  83. Zone, R.: Stereoscopic Cinema and the Origins of 3-D Film, 1838–1952. University Press of Kentucky, Lexington, KY (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Devernay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Devernay, F., Beardsley, P. (2010). Stereoscopic Cinema. In: Ronfard, R., Taubin, G. (eds) Image and Geometry Processing for 3-D Cinematography. Geometry and Computing, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12392-4_2

Download citation

Publish with us

Policies and ethics