Skip to main content

Anti-folksonomical Recommender System for Social Bookmarking Service

  • Conference paper
Web Information Systems and Technologies (WEBIST 2009)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 45))

Included in the following conference series:

  • 503 Accesses

Abstract

Social bookmarking has been in the spotlight recently. Social bookmarking allows users to add several keywords called tags to items they bookmarked. Many previous works on social bookmarking using actual words for tags, called folksonomy, have come out. However, essential information of tags is in the classification of items by tags. Based on this assumption, we propose an anti-folksonomical recommendation system for calculating similarities between groups of items classified according to tags. In addition, we use hypothesis testing to improve these similarities based on statistical reliability. The experimental results show that our proposed system provides an appropriate recommendation result even if users tagged with different keywords.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Communications of the ACM 35(12), 61–70 (2003)

    Article  Google Scholar 

  2. Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. Journal of Information Science (2005)

    Google Scholar 

  3. Gunduz, S., Ozsu, M.T.: A user interest model for web page navigation. In: Proceedings of International Workshop on Data Mining for Actionable Knowledge (2003)

    Google Scholar 

  4. Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Ishikawa, H., Nakajima, T., Mizuhara, T., Yokoyama, S., Nakayama, J., Ohta, M., Katayama, K.: An intelligent web recommendation system: A web usage mining approach. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 342–350. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Jaschke, R., Marinho, L.B., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Kazienko, P., Kiewra, M.: Integration of relational databases and web site content for product and page recommendation. In: International Database Engineering and Applications Symposium, IDEAS 2004 (2004)

    Google Scholar 

  8. Li, J., Zaiane, O.R.: Combining usage, content, and structure data to improve web site recommendation. In: Proceedings of Web KDD 2004 workshop on Web Mining and Web Usage (2004)

    Google Scholar 

  9. Mika, P.: Ontologies are us: a unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 122–136. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Niwa, S., Doi, T., Honiden, S.: Web page recommender system based on folksonomy mining. In: Proceedings of the Third International Conference on Information Technology: New Generations, ITNG 2006 (2006)

    Google Scholar 

  11. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Cooperative Work Conference, pp. 175–186 (1994)

    Google Scholar 

  12. Rucker, J., Polanco, M.J.: Siteseer: Personalized navigation for the web. Communications of the ACM 40(3), 73–75 (1997)

    Article  Google Scholar 

  13. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference (WWW10), pp. 285–295 (2001)

    Google Scholar 

  14. Yanbe, Y., Jatowt, A., Nakamura, S., Tanaka, K.: Can social bookmarking enhance search in the web? In: Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sasaki, A., Miyata, T., Inazumi, Y., Kobayashi, A., Sakai, Y. (2010). Anti-folksonomical Recommender System for Social Bookmarking Service. In: Cordeiro, J., Filipe, J. (eds) Web Information Systems and Technologies. WEBIST 2009. Lecture Notes in Business Information Processing, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12436-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12436-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12435-8

  • Online ISBN: 978-3-642-12436-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics