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ABSTRACT

This work deals with the sonification of a quantum mechanical
system and the processes that occur as a result of its quantum me-
chanical nature and interactions with other systems. The quantum
harmonic oscillator is not only regarded as a system with sonifi-
able characteristics but also as a storage medium for quantum in-
formation. By representing sound information quantum mechan-
ically and storing it in the system, every process that unfolds on
this level is inherited and reflected by the sound. The main profit
of this approach is that the sonification can be used as a first in-
sight for two models: a quantum mechanical system model and a
quantum computation model.

1. INTRODUCTION

The quantum harmonic oscillator is one of the most fundamental
quantum mechanical systems. It describes as in classical mechan-
ics the motion of an object subjected to a parabolic potential [1,
pp. 54–63]. As every other quantum mechanical system it is de-
scribed by its Hamiltonian, which for this system is solvable with
known eigenstates and eigenvalues. Any state of the system can
be expressed as a superposition of its eigenstates. The quantum
harmonic oscillator provides a physical realization of a quantum
computer model [2, pp. 283–287] where quantum information is
stored in the state of the quantum harmonic oscillator and then
processed through its intristic time evolution or through coupling
with the environment. The sonification choices that were adopted
in this work could also be associated with these information pro-
cessing operations.

At a first step sound information is stored quantum mechani-
cally in the system’s state. Letting the system evolve in time or in-
teract with other systems affects the state and thereby the stored in-
formation. The deformation of the stored sound reflects the charac-
teristics and properties of the system and the processes that occur.
In the cases where the eigenvalues and eigenstates are affected,
their sonification could also add more insight to the phenomena.

The motivation for this approach is to gain a first insight to
quantum computational storage operations through sound. Quan-
tum mechanical memory has in general different properties from
the classical [2, pp. 13–17], which can be highlighted through
sonification. The impact of an external disturbance to the stored
quantum information is a fairly complex procedure with interde-
pendencies that can be perceived coherently through sound. The
part of the stored quantum information which is classically acces-
sible through quantum measurement and the impact of the mea-
surement operations in the classically retrieved part can be also
acoustically represented with the use of this approach.

The best known model of a quantum mechanical memory unit
is the qubit [2, pp. 13–17] which is abstract and unbounded from
the properties of the physical system that realizes it. The harmonic
oscillator quantum computer model bases on the features of the
underlying system and therefore the representation of the quantum
information is directly interconnected with the system properties.

Many other problems of quantum mechanics such as the single
mode of an electromagnetic field in a one-dimensional cavity and
the vibration spectra of diatomic molecules base on the quantum
harmonic oscillator [1, pp. 19–32]. Thus this sonification could be
a start to gain knowledge for more than one quantum mechanical
system that are of the same form but also quantum mechanical
systems in general because they follow the same principles.

This paper is organized as follows: The second section pro-
vides a very brief description of the system that is needed for the
understanding of the sonification decisions. The third section con-
centrates on the sonification of the time evolution process of the
quantum harmonic oscillator as a closed system, which is a deriva-
tion of the time-dependent Schrödinger equation. In the fourth
section the system is subjected in two types of disturbances where
the influence of the interactions with several other systems is de-
scribed with the help of perturbation theory. The fifth section pro-
vides some details of the implementation whereas the sixth section
presents some future plans and ideas for future works.

2. QUANTUM HARMONIC OSCILLATOR

2.1. Description of the system

Every quantum mechanical system’s total energy is described by
its HamiltonianĤ. Leaving the time evolution of the system aside
and concentrating on the description of the system for a specific
time point, the time-independent Schrödinger equation is [1, pp.
19–32]:

Ĥψ(x) = Eψ(x) (1)

whereĤ is the Hamiltonian of the system,ψ(x) the wave-
function that represents the state of the system andE the eigenval-
ues ofĤ. The value of|ψ(x) |2 expresses the probability density
of finding the oscillating object at the positionx [3, pp. 54–57].
The HamiltonianĤ is mathematically represented by the equation
[1, pp. 54–63]:

Ĥ = K + V =
p̂2

2m
+

mω2

2
x̂

2 (2)

WhereK is the kinetic energy,V the potential energy,̂p the
momentum operator,m the mass of the oscillating particle,ω the
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eigenfrequency and̂x the displacement operator. The eigenval-
ues that satisfy the equation (1) are quantized and represent the
eigenenergies of the quantum harmonic oscillator:

En =

„

n +
1

2

«

~ω, n = 0, 1, 2... (3)

The eigenstates that satisfy the equation (1) are mathemati-
cally expressed with the help of the Hermite PolynomialsHn(x):

Hn(x) = (−1)n
e

x
2 dn

dxn
e
−x

2

, n = 0, 1, 2... (4)

The eigenstatesψn(x) which satisfy the equation (1) are weighted
Hermite polynomials and represent the eigenfunctions of the quan-
tum harmonic oscillator:

ψn(x) =

„

a√
π n! 2n

« 1
2

Hn(ax) e
− a

2

2
x
2

, a =

r

mω

~
(5)

Figure 1: The first six (from 0 to 5) Eigenenergies and Eigenfuc-
ntions of the Quantum Harmonic Oscillator. The Eigenergies are
depicted with equally spaced vertical lines. The corresponding
Eigenfunctions are shifted on the y-axis each one with offset the
particular Eigenenergy. On the same plot is also the parabolic
potentialV .

The eigenfunctions of the quantum harmonic oscillator consti-
tute a complete and orthonormal basis. Therefore any state of the
system which is represented by the wavefunction can be written as
a linear combination of its eigenstates.

ψ(x, t) =

∞
X

n=1

cnψn(x) (6)

The sum of all probabilities should sum up to one. Thecn

coefficients are complex numbers that are called probability am-
plitudes [4] and fulfill the normalization condition:

∞
X

n=1

|cn |2= 1 (7)

2.2. Shapelet Basis Expansion Method

The description of the audio signals that is realized in this work
bases on their decomposition onto the eigenfuctions of the quan-
tum harmonic oscillator thus falling to the category of a
non-parametric signal expansion method [5, pp. 9–21]. The sig-
nal can be expaned as a linear combination of the basis functions
{ψn(x)}. The coefficients for a signaly can be obtained from the
following equation:

y =
X

n

cnψn ⇒ cn = B
−1

y (8)

WhereB is the matrix that contains the eigenfunctionsψn(x)
of the quantum harmonic oscillator. Theψn(x) functions are called
Shapelets [6], [7], because they form a perturbed version of a gaus-
sian function as shown by the equation (5). Shapelets have a main
difference to wavelets, namely the various shapes of the basis func-
tions. The wavelet transform basis functions are the same up to a
scaling factor. On the other side the shapelet basis functions are of
different size and form.

The first step of the sonification procedure is to store an audio
signal into the quantum harmonic oscillator using the overlap -
add method [8, pp. 237–238]. The signal is multiplied by a sliding
window of lengthN . The successive windowed signal frames are
expaned as a linear combination of the eigenfunctions of the same
quantum harmonic oscillator.

The number of the eigenfunctions of the quantum harmonic
oscillator is theoretically infinite but in this work only finite num-
ber of eigenfunctions are implemented depending on the needs for
a good analysis and resynthesis. Throughout this work for a win-
dowed part of a signal with number of samplesN the number of
the coefficientscn used was alsoN . An extended testing of this
basis for audio signal processing applications can be made in fu-
ture works.

2.3. Harmonic Oscillator Quantum Computation Model

The computational building block of a quantum mechanical mem-
ory is the qubit whereas the memory of a quantum computer con-
sists of several qubits [2, pp. 13–17]. As with the classical bit,
the qubit is realized on a physical system. The primarly difference
is that this physical system is in a level where quantum mechan-
ical phenomena are apparent and determine the properties of the
storage. A detailed description of the qubit, its properties and its
differences with the classical bit are beyond the scope of this paper
and are not needed for the understanding of this work.

What is essential for the comprehension of this approach is
that the state of the quantum harmonic oscillator is in correspon-
dence with the state of a quantum mechanical memory created
from qubits. In the quantum harmonic oscillator model one pos-
sible physical implementation of the qubits is made in such a way
that the state of the whole memory can be expanded as a linear
combination of the eigenfunctionsψn(x) [2, pp. 283–287]. The
analogy is for every2N eigenstates that are used for the expansion
of the signal represent the quantum information storage capabil-
ity of N qubits because they create an equivalent complex Hilbert
space.

It is assumed that the system can be prepared in a desired state
through an initialization procedure. Special attention needs to be
drawn to the fact that the coefficients that are computed for the ex-
pansion of the stored audio signal not only need to fulfill the equa-
tion (8) but also the normalization condition (7). For the scope of
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this work no normalization of the coefficients to probability am-
plitudes is made. For a future work in which a measurement pro-
cedure is included, the consideration of the probability amplitudes
normalization is crucial.

3. CLOSED SYSTEM TIME EVOLUTION

A quantum system that evolves without coupling to the environ-
ment is called closed or isolated [2, pp. 81–84]. The time - depen-
dent
Schr̈odinger equation (9) describes the evolution of the closed sys-
tem in time [1, pp. 19–32].

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t) (9)

where~ is the Planck’s constant. The time evolution is a pro-
cedure that changes the state of the system but leaves the eigenen-
ergies and eigenfunctions unaffected. If the wavefunction of the
systemψ(x, 0) at timet0 = 0 is desribed by the equation [2, pp.
13–17]:

ψ(x, 0) =

∞
X

n=1

c
(0)
n ψn(x) (10)

wherec
(0)
n are the coefficients of the input sound according to

theψn(x) basis at timet0 = 0, then after timet each coefficient
will be multiplied by a different complex exponential term:

c
(t)
n = c

(0)
n e

−iEnt

~ (11)

whereEn is the n-th eigenenergy. The state of the system will
change accordingly:

ψ(x, t) =

∞
X

n=1

c
(t)
n ψn(x) =

∞
X

n=1

c
(0)
n e

−iEnt

~ ψn(x) (12)

Every time that a windowed sound segment is stored in the
quantum oscillator, the coefficientscn(0) for this window are com-
puted with respect to the basis of the eigenfunctionsψn(x). Each
coefficient is then multiplied with its corresponding exponential
term. The real and imaginary part of the time evolved coefficients
are separately used for the resynthesis of the sound and produce
two individual tracks that are merged in a stereo file. The phe-
nomenon produces a modulation in the spectral domain which re-
peats itself after a specific period of time (fig. 2). The period dura-
tion Tn of the evolution process is individual for each coefficient
cn and is the same for the real and imaginary part:

Tn =
4π

(2n + 1)ω
(13)

In this implementation the time variablet doesn’t flow contin-
uously at each sample but for every window increases by the value
of the hop size that is used in the overlap-add. With the use of a
scaling factor on the time parameter the phenomenon can be heard
at various speeds.

The time evolution implements a unitary transformation and
therefore is the main procedure that can be used for the realization
of quantum gates in this computational model [2, pp. 283–287].
With the additional use of perturbation of the eigenfunctions as
described in the next chapter, information processing is achieved.
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Figure 2:Spectrum of a sinusoidal of frequency 440 Hz expanded
over the shapelet basis, then resynthesized and time-evolved. Ac-
cording to the time-evolution descripted by equation (12), the
spectrum presents modulating frequency components that rise
through the periodic change of the expansion coefficients.

4. OPEN SYSTEM

4.1. Overview of Perturbation Theory

When a quantum mechanical system has strong interactions with
the environment it is called open [2, pp. 353–354]. Solving such
systems i.e. finding their eigenenergies and eigenfunctions, is a
complex and difficult procedure. Therefore an approximation method
needs to be used. The perturbation theory is one of them and can
be applied when a system with a solvable HamiltonianĤ0 is sub-
jected to a relatively weak disturbanceδĤ in regard to the value
of Ĥ0 [1, pp. 133]. Thus, the Hamiltonian of the overall system
can be written as an addition of the exact solvableĤ0 and the dis-
turbanceδĤ:

Ĥ = Ĥ0 + δĤ (14)

The fact that this disturbance is small enough assures that there
are only going to be slight changesδψ andδE on the wavefunc-
tion and the energy of the system. The eigenenergies and eigen-
functions can be expressed with the help of power series:

E
(k)
n =

1

k!

dkEk

dλk
, k = 0, 1, 2... (15)

ψ
(k)
n =

1

k!

dkψn

dλk
, k = 0, 1, 2... (16)

The perturbationδĤ corresponds to a Hamiltonian that is math-
ematically represented by a Hermitian matrix. In the case of the
quantum harmonic oscillator with Hamiltonian̂H0 we can think
of a disturbanceδĤ that is a result of adding or removing some
energy from the system. Throughout this work, the use of ap-
proximation approaches other than the perturbation theory are not
addressed, but this could be a topic that can be further explored.
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There are two types of perturbation approaches: the time-
independent and the time-dependent. The time-independet pro-
cedure describes the system’s behavior when the disturbance is
constant, whereas the time-dependent deals with systems that are
subjected to a time-varying disturbance.

4.2. Time-independent or Rayleigh-Schr̈odinger Method

4.2.1. Description of the process

The undisturbed or principal system will have an exact solution
according to the time-independent Schrödinger equation [1, pp.
134–140]:

Ĥ0 ψ
(0)
n (x) = E

(0)
n ψ

(0)
n (x) (17)

The zero at the superscript ofE
(0)
n denotes that the eigenener-

gies are from the undisturbed system whereas then at the subscript
of the eigenenergies shows the correspondence of the n-th eigenen-
ergy to the n-th eigenfunction. After the disturbance is applied the
Hamiltonian will change by means of the equation (14) where the
termδĤ is replaced byλ V and thus the Schrödinger equation for
this system will be:

Ĥψn(x) = (Ĥ0 + λ V )ψn(x) = Enψn(x) (18)

WhereĤ is the Hamiltonian,ψn(x) the eigenfunctions and
E the eigenenergies of the of the disturbed system. Theλ term
is a factor that controls the disturbance intensity and can take val-
ues with range from 0 to 1 which represent no pertubation to full
perturbation accordingly. Just because the disturbance is weak,
the eigenenergiesEn of the disturbed system will not deviate very
much from the eigenenergiesE(0) of the undisturbed. The same
property holds for the eigenfunctions. The power series expansion
will be in accordance with the equations (15) and (16).

En = E
(0)
n + λE

(1)
n + λ

2
E

(2)
n + ... (19)

ψn(x) = ψ
(0)
n (x) + λψ

(1)
n (x) + λ

2
ψ

(2)
n (x) + ... (20)

The superscripts0, 1, 2... denote the zero-th, first and second
term of the power series. The zero superscript is the unperturbed
one. Then at the subscript of the eigenenergies shows the corre-
spondence of the n-th eigenenergy to the n-th eigenfunction.

The derivation of the solution occurs by inserting the equations
(19) and (20) into (18). The expression of the first order term of
the eigenfunction’s correction as a linear combination with respect
to the orthonormal basis that is formed from the eigenfunctions
ψ

(0)
n (x) of the unperturbed system, leads to the first and second

correction to the energy of the system:

E
(1)
n = ψ

(0)
n (x)

†
V ψ

(0)
n (x), E

(2)
n =

´X

m

| ψ
(0)
m (x)

†
V ψ

(0)
n (x) |2

E
(0)
n − E

(0)
m

(21)
The first term of the eigenfunction correction is expressed by

the following equation:

ψ
(1)
n (x) =

´X

m

ψ
(0)
m (x)

†
V ψ

(0)
n (x)

E
(0)
n − E

(0)
m

ψ
(0)
m (x) (22)

where the acute in the summation denotes that the sum is made
over alln eigenfunctions except them. Higher terms can be ob-
tained iteratively but are not used for the implementation to reduce
the computational complexity of the implementation.

4.2.2. Audification Choices

For the audification of this perturbation kind various disturbance
types that correspond to different Hermitian matricesV were used.
One example of a used perturbation corresponds to a constant elec-
trical field with a potential that has linear dependency from the
displacementx which is added to the parabolic potential. Theλ

factor can also be used to control how intense the development of
the disturbance phenomena will be.

By applying the same disturbance typeV many times consec-
utively, a slow deformation of the shape of each of the eigenfunc-
tions can be examined at first. The eigenenergie’s values are also
slightly deviating from their initial value, each one differently but
consistently as a whole. Each one of the perturbation types pro-
duces a characteristic change which is clearly recognizable.

A phenomenon that occurs in every tested disturbance type,
is a deformation of the eigenfrequencies and eigenvalues after the
application of sufficient many consecutive time-independent per-
turbations. Suddenly the system starts to decompose and after a
while it collapses. The eigenenergiesEn value range grow and
the implemented simulation eventually stops. The eigenfunctions
ψn(x) are also greatly deformed at the same time because as the
eigenenergie’s and eigenfunction’s changes are closely linked as
expressed also from the equations (21) and (22).

The alteration of the eigenfunctions can be made indepen-
dently hearable by a direct mapping of the eigenfunctions in the
time axis, where each channel holds one eigenfunction. Figure 3
shows the deformation of the eigenfrequencies in subsequent per-
turbations. One crucial point in which audification and sonifica-
tion are profitable over a visual representation is the fact that the
eye cannot grasp the interconnections and the consistensy of the
changes of all eigenfunctions as an integrated entity.

Figure 3:The deformation of the Eigenfunctionsψ0, ψ39, ψ80 and
ψ127 after perturbing succesively several times. In the leftmost
part of the figure the Eigenfunctions are unperturbed and at the
rightmost are one step before collapsing. The value ofp denotes
the number of time-independent perturbations that are already ap-
plied to the system. The analogy between the amplitude of the per-
turbed Eigenfunctions is not in direct proportion with their com-
puted values after the desolving starts, due to normalizing condi-
tions.

As mentioned before, the eigenfunction’s transformations can
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be also made recognizable by analyzing the windowed part of the
audio signal as a linear combination of the eigenbasis. In every
step of the overlap-add procedure a time-independent perturbation
is applied which alters the eigenfunctions in a way that they may
not constitute a complete orthogonal basis anymore. Despite this
fact, the coefficients are computed as if the underlying basis was
orthonormal. By this means the deformation of the sound is an
indication for the decompostion of the eigenfunctions and their
orthonormality.

Perturbations of small intensity have no recognizable audible
effects in the stored sound. The effects are starting to take place
only a little before the collapsing occurs. Because of the rich con-
tent of the eigenfunction’s alterations, a sonification procedure that
would be more reflective of the phenomenon could be addressed.

4.2.3. Sonification Choices

Just because the eigenenergies of the unperturbed system are equally
spaced as presented in (3), the idea of a projection of their values
on the frequency plane has arised. With an appropriate scaling fac-
tor the eigenenergies can be seen as the frequencies of sinusoidals
that before any perturbation create a harmonic sound. Each time
the perturbation is applied the values of the frequencies of the si-
nusoidals are slightly changed. To make the sound effect more
recognizable, the amplitude of all the sinusoidal components of
the spectrum was set to the same value and then was filtered with
the spectral envelope of a vowel of small duration with the help of
cepstrum analysis [8, pp. 319–321].

As it can also be seen in figure 4 the first times the perturbation
is applied the spectrum of the sound has a characteristic develop-
ment. After a critical number of perturbations the decomposition
of the system begins and an inharmonic sound is produced.
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Figure 4:Spectrum of the sonified Eigenenergies after perturbing
succesively several times. At each frame that is easilly seen in
the figure by the vertical characteristic, the new Eigenenergies are
computed. For the first perturbations the spectrum maintains a
recognizable structure and after sufficiently many the dissolution
of the spectral structure is apparent.

4.3. Time-dependent or Dirac Method

4.3.1. Description of the process

In this case the perturbation is denoted with theV (t) operator that
is assumed to be small in regard to the HamiltonianĤ0 of the
undisturbed system and the time duration of the disturbance reac-
tion to the system is considered to be small enough. The eigenen-
ergies and eigenfunctions of the system will also change with time.
The Hamiltonian will be the addition of the unperturbed solvable
and the time-dependent term [1, pp. 149–153]:

Ĥ(t) = Ĥ0 + V (t) (23)

The time-dependent Schrödinger equation is in this case:

i~
∂ψ(x, t)

∂t
= Ĥ(t)ψ(x, t) = (Ĥ0 + V (t))ψ(x, t) (24)

and cannot be solved by separating the spacial and temporal
parts with the use of variable separation. That is the reason that
in this case the solution cannot be implemented with the approach
of the time-independent case. In analogy with the methodology of
the time-independent case, the wavefunction of the system will be
expanded as a linear combination of the basis of the unpertubed
systm’s eigenfunctions whereas the solution involves the detection
of the expansion coefficients.

ψ(x, t) =

∞
X

m=1

cm(t)ψ(0)
m (x) (25)

The coefficientscm(t) are represented by a mathematical ex-
pression that includes both the time-evolution term that is caused
from the unperturbed Hamiltonian̂H0 combined with the time-
dependent transformationam(t) that is generated fromV (t):

cm(t) = am(t)e
−iE

(0)
m t

~ (26)

Theam(t) terms are expanded with the help of power series.
The equation (25) is solved to:

ψ(x, t) =

∞
X

m=1

am(t)e
−iE

(0)
m t

~ ψ
(0)
m (x) (27)

where thea(1)
m (t) is the first correction term of theam(t) ex-

pansion:

a
(1)
m (t) = − i

~

Z

t

0

Vnm(t′)e
−i(En−Em)t

′

~ dt
′ (28)

andVnm(t) expresses the term:

Vnm(t) =

Z

x

ψ
(0)
m (x)

†
V (t)ψ(0)

n (x)dx (29)

The further higher terms are computed iteratively but are not
used in the implementation of this work due to their computational
complexity.

The terma
(1)
m (t) in equation (28) represents the fact that the

system posesses a kind of memory. The integration is always com-
puted from the time point where the perturbation started. Even if
the disturbance stops its action the effects of the interaction are
“remembered” and maintained in the system. This phenomenon is
inherited to the stored sound.
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4.3.2. Audification Choices

The time-dependent perturbation only affects the state of the sys-
tem. Therefore an insight to the influence of the disturbance can
be only made through the audification of the stored sound. More
specifically, for every windowed segment coefficients the first or-
der correction term is computed and added as shown in (29). The
resynthesized sound with respect to the basis of the unperturbed
eigenfunctions contains the changes that are implied by the distur-
bance.

So far the type of perturbationsV (t) that were used could be
decomposed as a product of a constant Hermitian matrixV and
a function of timef(t). TheV term contains the spatial depen-
dency and is in analogy with the systems that were used in the
time-independent perturbation and thef(t) which expresses the
time dependency and contains combinations of linear, step and si-
nusoidal functions.

In the signals treated with a time-dependent perturbation there
is always an existing component that evolves in time according to
the unperturbed Hamiltonian as seen in (26) and a component that
evolves under the influence of the perturbation. These two evolu-
tions interfere with each other and create recognizable interference
patterns in the spectral domain. Specially in the case wheref(t)
is almost constant for a specific duration, a periodic component
which acoustically is clearly separated from the evolution modu-
lation appears as shown in figure 6.

Figure 5:The time-dependencyf(t) of the perturbation that was
used for the creation sound in figure 6

By using perturbations with different types ofV parts and
same time dependencyf(t) it became apparent that the developed
sounds reflect more the time dependency than theV component.

5. IMPLEMENTATION DETAILS

Two different software packages that implement the functionality
mentioned above have been programmed, one in Matlab and one in
C for a PD external. The GNU Multiple Precision Arithmetic Li-
brary (GMP) [9] provided an efficient solution to the computation
of the factorial which is the main obstacle for the implementation
of the eigenfunctionsψn(x) for largen. For the efficient compu-
tation of the externals, specially in the analysis-resynthesis stage,
the CBLAS [10] and CLAPACK [11] were included.

6. FUTURE WORK

For the further comprehension of the system’s behavior sonifica-
tion decisions need to be undertaken. As seen in the eigenfunc-
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Figure 6: Spectrum of a sinusoidal with frequency 440 Hz when
opposed to a time-dependent perturbation withV a Hadamard
matrix and time-dependencyf(t) as in the figure 5. The devel-
opment of the sound has similarities with the time-evolution spec-
trum of the figure 2 in the beginning but the perturbation effects
gradually grow. At the time pointt = 5 sec the perturbation stops
but its effects remain as a constant periodical component.

tion’s deformation from time-independent perturbation case, ap-
propriate methods that include psychoacoustical principles and are
stronger interconnected to the nature of some of the phenomena,
should be further explored.

Apart from the pertubation method other disturbance approaches
can be explored, such as the variational method [1, pp. 147–149].
This approaches are applied in the cases where the decomposi-
tion of the disturbed Hamiltonian cannot be made in the means of
an approximative method because the system cannot be described
through a small disturbance on a solvable system.

According to the correspondence principle of Bohr for rela-
tively big values ofn, the bahavior of the quantum harmonic oscil-
lator should be consistent with its classical counterpart. In partic-
ular, the larger then becomes, the more we approach the classical
harmonic oscillator [3, pp. 54–57]. Contrariwise, for the lowest
possible value ofn the behavior of the oscillating object deviates
the most from the classical one. Quantum mechanical phenom-
ena obey the uncertainty principle, therefore the comparison can
only be made in terms of propability densities of finding the oscil-
lating object in a specific positionx. A sonification scheme that
will concentrate on the transition from the quantum to the classical
equivalent harmonic oscillator could be one of the possible ways
for the sonification of the correspondence principle.

All of the phenomena that are described until now were real-
ized in the quantum mechanical level. How much of the stored
information will be accessible in the classical level could be also
explored. For the computational model to be complete a readout
process of the state of the system must be included [2, pp. 283–
287]. The three quantum measurement schemes (General, Pro-
jective and Positive Operator Valued) will also be implemented
and included in this work [2, pp. 84–93]. The audification of the
measurement process, can be an approach to understand the phe-
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Figure 7:Pure Data Externalqho ∼ that implements the impact
that the time evolution, time-independent and time-dependent per-
turbation procedures have to a stored test sound.

nomenon of the collapse of the wavefunction. Audio signals could
be used to gain a first insight of how much of the signal informa-
tion that was stored by a quantum mechanical memory is classicaly
accesible.
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