Skip to main content

Spatialized Synthesis of Noisy Environmental Sounds

  • Conference paper
Auditory Display (CMMR 2009, ICAD 2009)

Abstract

In this paper, an overview of the stochastic modeling for analysis/synthesis of noisy sounds is presented. In particular, we focused on the time-frequency domain synthesis based on the inverse fast Fourier transform (IFFT) algorithm from which we proposed the design of a spatialized synthesizer. The originality of this synthesizer remains in its one-stage architecture that efficiently combines the synthesis with 3D audio techniques at the same level of sound generation. This architecture also allowed including a control of the source width rendering to reproduce naturally diffused environments. The proposed approach led to perceptually realistic 3D immersive auditory scenes. Applications of this synthesizer are here presented in the case of noisy environmental sounds such as air swishing, sea wave or wind sound. We finally discuss the limitations but also the possibilities offered by the synthesizer to achieve sound transformations based on the analysis of recorded sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, P.R.: Real Sound Synthesis for Interactive Applications. A. K Peters Ltd. (2002)

    Google Scholar 

  2. Rocchesso, D., Fontana, F.: The Sounding Object (2003), http://www.soundobject.org/

  3. Gaver, W.W.: What in the world do we hear? an ecological approach to auditory event perception. Ecological Psychology 5(1), 1–29 (1993)

    Article  MathSciNet  Google Scholar 

  4. Gaver, W.W.: How do we hear in the world? explorations in ecological acoustics. Ecological Psychology 5(4), 285–313 (1993)

    Article  MathSciNet  Google Scholar 

  5. van den Doel, K., Kry, P.G., Pai, D.K.: Foleyautomatic: physically-based sound effects for interactive simulation and animation. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 537–544 (2001)

    Google Scholar 

  6. O’Brien, J.F., Shen, C., Gatchalian, C.M.: Synthesizing sounds from rigid-body simulations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 175–181 (2002)

    Google Scholar 

  7. Raghuvanshi, N., Lin, M.C.: Interactive sound synthesis for large scale environments. In: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pp. 101–108 (2006)

    Google Scholar 

  8. Dobashi, Y., Yamamoto, T., Nishita, T.: Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Transactions on Graphics Proc. SIGGRAPH 2003 22(3), 732–740 (2003)

    Google Scholar 

  9. Dobashi, Y., Yamamoto, T., Nishita, T.: Synthesizing sound from turbulent field using sound textures for interactive fluid simulation. EUROGRAPHICS 23(3), 539–546 (2004)

    Google Scholar 

  10. van den Doel, K.: Physically-based models for liquid sounds. In: Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display (2004)

    Google Scholar 

  11. Miner, N.E., Caudell, T.P.: Using wavelets to synthesize stochastic-based sounds for immersive virtual environments. In: Proceedings of of ICAD 1997-The fourth International Conference on Auditory Display (1997)

    Google Scholar 

  12. Conversy, S.: Ad-hoc Synthesis of auditory icons. In: Proceedings of of ICAD 1998-The fifth International Conference on Auditory Display (1998)

    Google Scholar 

  13. Goodwin, M.: Adaptive Signal Models: Theory, Algorithms and Audio Applications. PhD thesis, University of California, Berkeley (1997)

    Google Scholar 

  14. McAulay, R.J., Quatieri, T.F.: Speech analysis/synthesis system based on a sinusoidal representation. IEEE Transactions on Acoustics, Speech and Signal Processing 34(4) (1986)

    Google Scholar 

  15. Serra, X., Smith, J.O.: Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal 14(4), 12–24 (1990)

    Article  Google Scholar 

  16. Hanna, P., Desainte-Catherine, M.: A statistical and spectral model for representing noisy sounds with short-time sinusoids. EURASIP Journal on Applied Signal Processing 5(12), 1794–1806 (2005)

    Google Scholar 

  17. Fitz, K., Haken, L.: Bandwidth enhanced sinusoidal modeling in lemur. In: Proceedings of the International Computer Music Conference (1995)

    Google Scholar 

  18. Fitz, K., Haken, L., Christensen, P.: Transient preservation under transformation in an additive sound model. In: Proceedings of the International Computer Music Conference (2000)

    Google Scholar 

  19. Fitz, K., Haken, L.: On the use of time-frequency reassignment in additive sound modeling. JAES 50(11), 879–893 (2002)

    Google Scholar 

  20. Goodwin, M.: Residual modeling in music analysis-synthesis. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (1996)

    Google Scholar 

  21. Dudley, H.: The vocoder. Bell Labs Record 17, 122–126 (1939)

    Google Scholar 

  22. Gold, B., Rader, C.M.: The channel vocoder. IEEE Transactions on Audio and Electroacoustics 15(4), 148–161 (1967)

    Article  Google Scholar 

  23. Smith, J.O.: Spectral Audio Signal Processing (October 2008), Draft (online book), http://ccrma.stanford.edu/jos/sasp/

  24. Rodet, X., Depalle, P.: Spectral envelopes and inverse fft synthesis. In: Proceedings of the 93rd AES Convention (1992)

    Google Scholar 

  25. Hartmann, W.: Signal, Sound and Sensation. In: American Institute of Physics (2004)

    Google Scholar 

  26. Amatriain, X., Bonada, J., Loscos, A., Serra, X.: Spectral Processing. In: DAFX: Digital Audio Effects, John Wiley & Sons Publishers, Chichester (2002)

    Google Scholar 

  27. Verma, T., Bilbao, S., Meng, T.H.Y.: The digital prolate spheroidal window. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP (1996)

    Google Scholar 

  28. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V- The discrete case. Bell System Technical Journal 57, 1371–1430 (1978)

    Google Scholar 

  29. Hanna, P., Desainte-Catherine, M.: Adapting the overlap-add method to the synthesis of noise. In: Proceedings of the COST-G6 Conference on Digital Audio Effects, DAFX 2002 (2002)

    Google Scholar 

  30. Verron, C., Aramaki, M., Kronland-Martinet, R., Pallone, G.: Spatialized additive synthesis of environmental sounds. In: Proceedings of the 125th AES Convention (2008)

    Google Scholar 

  31. Verron, C., Aramaki, M., Kronland-Martinet, R., Pallone, G.: A 3d immersive synthesizer for environmental sounds. IEEE Transactions on Audio, Speech, and Language Processing (to accepted)

    Google Scholar 

  32. Jot, J.M., Larcher, V., Pernaux, J.M.: A comparative study of 3-d audio encoding and rendering techniques. In: Proc. 16th Int. Conf. AES (1999)

    Google Scholar 

  33. Schroeder, M.R.: An artificial stereophonic effect obtained from a single audio signal. JAES 6(2) (1958)

    Google Scholar 

  34. Orban, R.: A rational technique for synthesizing pseudo-stereo from monophonic sources. JAES 18(2) (1970)

    Google Scholar 

  35. Gerzon, M.A.: Signal processing for simulating realistic stereo images. In: AES Convention 93 (1992)

    Google Scholar 

  36. Kendall, G.: The decorrelation of audio signals and its impact on spatial imagery. Computer Music Journal 19(4), 71–87 (1995)

    Article  Google Scholar 

  37. Sibbald, A.: Method of synthesizing an audio signal. United State Patent No. US 6498857 B1 (december (2002)

    Google Scholar 

  38. Potard, G., Burnett, I.: Decorrelation techniques for the rendering of apparent sound source width in 3d audio displays. In: Proc. Int. Conf. on Digital Audio Effects, DAFX 2004 (2004)

    Google Scholar 

  39. Jot, J.M., Walsh, M., Philp, A.: Binaural simulation of complex acoustic scene for interactive audio. In: Proceedings of the 121th AES Convention (2006)

    Google Scholar 

  40. http://www.lma.cnrs-mrs.fr/~kronland/spatsynthIcad09/index.html :

  41. http://www.lma.cnrs-mrs.fr/~kronland/spatsynthIEEE/index.html :

  42. Freed, A.: Real-time inverse transform additive synthesis for additive and pitch synchronous noise and sound spatialization. In: Proceedings of the 104th AES Convention (1998)

    Google Scholar 

  43. Freed, A.: Spectral line broadening with transform domain additive synthesis. In: Proceedings of the International Computer Music Conference (1999)

    Google Scholar 

  44. Marelli, D., Aramaki, M., Kronland-Martinet, R., Verron, C.: Time-frequency synthesis of noisy sounds with narrow spectral components. IEEE Transactions on Audio, Speech, and Language Processing (to accepted)

    Google Scholar 

  45. Misra, A., Cook, P.R., Wang, G.: A new paradigm for sound design. In: Proc. Int. Conf. on Digital Audio Effects, DAFX 2006 (2006)

    Google Scholar 

  46. Rodet, X., Schwarz, D.: Spectral Envelopes and Additive + Residual Analysis/Synthesis. In: Analysis, Synthesis, and Perception of Musical Sounds: Sound of Music, pp. 175–227. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verron, C., Aramaki, M., Kronland-Martinet, R., Pallone, G. (2010). Spatialized Synthesis of Noisy Environmental Sounds. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds) Auditory Display. CMMR ICAD 2009 2009. Lecture Notes in Computer Science, vol 5954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12439-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12439-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12438-9

  • Online ISBN: 978-3-642-12439-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics