Skip to main content

Spatio-temporal Outlier Detection in Precipitation Data

  • Conference paper
Knowledge Discovery from Sensor Data (Sensor-KDD 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5840))

Included in the following conference series:

  • 1324 Accesses

Abstract

The detection of outliers from spatio-temporal data is an important task due to the increasing amount of spatio-temporal data available and the need to understand and interpret it. Due to the limitations of current data mining techniques, new techniques to handle this data need to be developed. We propose a spatio-temporal outlier detection algorithm called Outstretch, which discovers the outlier movement patterns of the top-k spatial outliers over several time periods. The top-k spatial outliers are found using the Exact-Grid Top- k and Approx-Grid Top- k algorithms, which are an extension of algorithms developed by Agarwal et al. [1]. Since they use the Kulldorff spatial scan statistic, they are capable of discovering all outliers, unaffected by neighbouring regions that may contain missing values. After generating the outlier sequences, we show one way they can be interpreted, by comparing them to the phases of the El NiƱo Southern Oscilliation (ENSO) weather phenomenon to provide a meaningful analysis of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, D., Phillips, J.M., Venkatasubramanian, S.: The Hunting of the Bump: On Maximizing Statistical Discrepancy. In: Proceedings 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1137ā€“1146. ACM Press, New York (2006)

    Chapter  Google Scholar 

  2. Han, J., Altman, R.B., Kumar, V., Mannila, H., Pregibon, D.: Emerging Scientific Applications in Data Mining. Communications of the ACM 45(8), 54ā€“58 (2002)

    Article  Google Scholar 

  3. Miller, H.J.: Geographic Data Mining and Knowledge Discovery. In: Wilson, Fotheringham, A.S. (eds.) Handbook of Geographic Information Science (2007)

    Google Scholar 

  4. Miller, H.J., Han, J.: Geographic Data Mining and Knowledge Discovery: An Overview In Geographic Data Mining and Knowledge Discovery. Taylor & Francis, New York (2001)

    Book  Google Scholar 

  5. Openshaw, S.: Geographical Data Mining: Key Design Issues. In: Proceedings of GeoComputation 1999 (1999)

    Google Scholar 

  6. Liebmann, B., Allured, D.: Daily precipitation grids for South America. Bulletin of the American Meteorological Society 86, 1567ā€“1570 (2005)

    Article  Google Scholar 

  7. DAleo, J.S., Grube, P.G.: The Oryx Resource Guide to El NiƱo and La NiƱa. Oryx Press, CT (2002)

    Google Scholar 

  8. National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center: Monthly Atmospheric & SST Indices, http://www.cpc.noaa.gov/data/indices (Accessed February 2, 2008)

  9. Wu, E., Chawla, S.: Spatio-Temporal Analysis of the relationship between South American Precipitation Extremes and the El NiƱo Southern Oscillation. In: Proceedings of the 2007 International Workshop on Spatial and Spatio-temporal Data Mining. IEEE Computer Society, Washington (2007)

    Google Scholar 

  10. Agarwal, D., McGregor, A., Phillips, J.M., Venkatasubramanian, S., Zhu, Z.: Spatial Scan Statistics: Approximations and Performance Study. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 24ā€“33. ACM Press, New York (2006)

    Chapter  Google Scholar 

  11. Cheng, T., Li, Z.: A Multiscale Approach for Spatio-Temporal Outlier Detection. Transactions in GIS 10(2), 253ā€“263 (2006)

    Article  Google Scholar 

  12. Birant, D., Kut, A.: Spatio-temporal outlier detection in large databases. In: 28th International Conference on Information Technology Interfaces, pp. 179ā€“184 (2006)

    Google Scholar 

  13. Ng, R.: Detecting Outliers from Large Datasets In Geographic Data Mining and Knowledge Discovery, pp. 218ā€“235. Taylor & Francis, New York (2001)

    Book  Google Scholar 

  14. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the Generation of Spatiotemporal Datasets. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases, pp. 147ā€“164. Springer, London (1999)

    Google Scholar 

  15. Kulldorff, M.: A Spatial Scan Statistic. Communications in Statistics - Theory and Methods 26, 1481ā€“1496 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Iyengar, V.S.: On Detecting Space-Time Clusters. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge Discovery and Data mining, pp. 587ā€“592. ACM, New York (2004)

    Chapter  Google Scholar 

  17. Chawla, S., Shekhar, S., Wu, W., Ozesmi, U.: Modelling Spatial Dependencies for Mining Geospatial Data: An Introduction. In: Geographic Data Mining and Knowledge Discovery, pp. 131ā€“159. Taylor & Francis, New York (2001)

    Chapter  Google Scholar 

  18. Tobler, W.R.: A computer model simulation of urban growth in the Detroit region. Economic Geography 46(2), 234ā€“240 (1970)

    Article  Google Scholar 

  19. Redmond, K.: Classification of El NiƱo and La NiƱa Winters, http://www.wrcc.dri.edu/enso/ensodef.html (Accessed October 24, 2008)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, E., Liu, W., Chawla, S. (2010). Spatio-temporal Outlier Detection in Precipitation Data. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds) Knowledge Discovery from Sensor Data. Sensor-KDD 2008. Lecture Notes in Computer Science, vol 5840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12519-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12519-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12518-8

  • Online ISBN: 978-3-642-12519-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics