Abstract
This paper studies the graph of the reachable set of a differential inclusion with non-fixed time impulses. Using approximation in L 1–metric, we derive exponential characterization of the reachable set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aubin, J.-P.: Impulsive Differential Inclusions and Hybrid Systems: A Viability Approach. Lecture Notes, Univ. Paris (2002)
Baier, R., Donchev, T.: Discrete Approximation of Impulsive Systems (submitted)
Clarke, F.: Optimization and nonsmooth analysis. John Wiley & Sons, Inc., New York (1983)
Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin (1992)
Donchev, T.: Approximation of the Solution Set of Impulsive Systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS, vol. 4818, pp. 309–316. Springer, Heidelberg (2008)
Donchev, T.: Impulsive differential inclusions with constrains. EJDE 66, 1–12 (2006)
Donchev, T., Farkhi, E., Wolenski, P.: Characterizations of Reachable Sets for a Class of Differential Inclusions. Functional Differential Equations 10, 473–483 (2003)
Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
Lempio, F., Veliov, V.: Discrete approximations of differential inclusions. Bayreuther Mathematische Schiften, Heft 54, 149–232 (1998)
Pereira, F., Silva, G.: Necessary Conditions of Optimality for Vector-Valued Impulsive Control Problems. System Control Letters 40, 205–215 (2000)
Plotnikov, V., Kitanov, N.: On Continuous dependence of solutions of impulsive differential inclusions and impulse control problems. Cybernetics System Analysis 38, 749–758 (2002)
Plotnikov, V., Plotnikov, A., Vitiuk, A.: Differential Equations with Multivalued Right-Hand Side. Asymptotical Methods. Astro Print, Odessa (1999) (in Russian)
Wolenski, P.: The exponential formula for the reachable set of a Lipschitz differential inclusion. SIAM J. Control Optim. 28, 1148–1161 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Donchev, T. (2010). Exponential Formula for Impulsive Differential Inclusions. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-12535-5_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12534-8
Online ISBN: 978-3-642-12535-5
eBook Packages: Computer ScienceComputer Science (R0)