Abstract
This work is concerned with the application of algebraic multilevel preconditioners in the solution of pressure linear systems arising in the large eddy simulation of turbulent incompressible flows in wall-bounded domains. These systems, coming from the discretization of elliptic equations with periodic and Neumann boundary conditions, are large and sparse, singular, compatible, and nonsymmetric because of the use of non-uniform grids taking into account the anisotropy of the flow. Furthermore, they generally account for a large part of the simulation time. We analyse, through numerical experiments, the effectiveness of parallel algebraic multilevel Schwarz preconditioners, based on the smoothed aggregation technique, in the iterative solution of the above pressure systems. We also investigate the behaviour of a variant of the smoothed aggregation technique, recently developed to efficiently deal with nonsymmetric systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aprovitola, A., D’Ambra, P., Denaro, F.M., di Serafino, D., Filippone, S.: Application of Parallel Algebraic Multilevel Domain Decomposition Preconditioners in Large Eddy Simulations of Wall-Bounded Turbulent Flows: First Experiments, ICAR-CNR Technical Report RT-ICAR-NA-07-02 (2007)
Aprovitola, A., Denaro, F.M.: On the Application of Congruent Upwind Discretizations for Large Eddy Simulations. J. Comput. Phys. 194(1), 329–343 (2004)
Aprovitola, A., Denaro, F.M.: A Non-diffusive, Divergence-free, Finite Volume-based Double Projection Method on Non-staggered Grids. Internat. J. Numer. Methods Fluids 53(7), 1127–1172 (2007)
Brown, P.N., Walker, H.F.: GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl. 18(1), 37–51 (1997)
Brezina, M., Vaněk, P.: A Black-Box Iterative Solver Based on a Two-Level Schwarz Method. Computing 63(3), 233–263 (1999)
D’Ambra, P., di Serafino, D., Filippone, S.: On the Development of PSBLAS-based Parallel Two-Level Schwarz Preconditioners. Applied Numerical Mathematics 57, 1181–1196 (2007)
D’Ambra, P., di Serafino, D., Filippone, S.: MLD2P4: a Package of Parallel Multilevel Algebraic Domain Decomposition Preconditioners in Fortran 95. ICAR-CNR Technical Report RT-ICAR-NA-09-01 (2009), http://www.mld2p4.it
Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Heidelberg (1996)
Filippone, S., Buttari, A.: PSBLAS 2.3: User’s and Reference Guide (2008), http://www.ce.uniroma2.it/psblas/
Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R., Sala, M.G.: ML 5.0 Smoothed Aggregation User’s Guide (May 2006), http://trilinos.sandia.gov/packages/ml/publications.html
Heroux, M.A., et al.: An Overview of the Trilinos Project. ACM Trans. Math. Soft. 31(3), 397–423 (2005)
Keyes, D.: Domain Decomposition Methods in the Mainstream of Computational Science. In: Proc. of the 14th International Conference on Domain Decomposition Methods, pp. 79–93. UNAM Press, Mexico City (2003)
Sala, M., Tuminaro, R.: A New Petrov-Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems. SIAM J. Sci. Comput. 31(1), 143–166 (2008)
Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)
Stüben, K.: Algebraic Multigrid (AMG): an Introduction with Applications. In: Schüller, A., Trottenberg, U., Oosterlee, C. (eds.) Multigrid. Academic Press, London (2000)
Vaněk, P., Mandel, J., Brezina, M.: Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems. Computing 56, 179–196 (1996)
Vaněk, P., Mandel, J., Brezina, M.: Convergence of Algebraic Multigrid based on Smoothed Aggregation. Numer. Math. 88, 559–579 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aprovitola, A., D’Ambra, P., di Serafino, D., Filippone, S. (2010). On the Use of Aggregation-Based Parallel Multilevel Preconditioners in the LES of Wall-Bounded Turbulent Flows. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-12535-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12534-8
Online ISBN: 978-3-642-12535-5
eBook Packages: Computer ScienceComputer Science (R0)