Abstract
In this study we initiate the investigation of a new advanced technique, proposed in Section 6 of [3], for generating adaptive Besov–Lorentz composite wavelet shrinkage strategies. We discuss some advantages of the Besov–Lorentz approach compared to firm thresholding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. In: Grundlehren der Mathematischen Wissenshaften, vol. 223. Springer, Berlin (1976)
Dechevsky, L.T.: Atomic decomposition of function spaces and fractional integral and differential operators. In: Rusev, P., Dimovski, I., Kiryakova, V. (eds.) Transform Methods and Special Functions, Part A (1999); Fractional Calculus & Applied Analysis, vol. 2, pp. 367–381 (1999)
Dechevsky, L.T., Grip, N., Gundersen, J.: A new generation of wavelet shrinkage: adaptive strategies based on composition of Lorentz-type thresholding and Besov-type non-thresholding shrinkage. In: Proceedings of SPIE: Wavelet Applications in Industrial Processing V, Boston, MA, USA, vol. 6763, article 676308, pp. 1–14 (2007)
Dechevsky, L.T., MacGibbon, B., Penev, S.I.: Numerical methods for asymptotically minimax non-parametric function estimation with positivity constraints I. Sankhya, Ser. B 63(2), 149–180 (2001)
Dechevsky, L.T., Ramsay, J.O., Penev, S.I.: Penalized wavelet estimation with Besov regularity constraints. Mathematica Balkanica (N. S.) 13(3-4), 257–356 (1999)
Delyon, B., Juditsky, A.: On minimax wavelet estimators. Applied and Computational Harmonic Analysis 3, 215–228 (1996)
Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3), 425–455 (1994)
Donoho, D.L., Johnstone, I.M.: Minimax estimation via wavelet shrinkage. Annals of Statistics 26(3), 879–921 (1998)
Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: Asymptopia? Journal of the Royal Statistical Society Series B 57(2), 301–369 (1995)
Gao, H.-Y., Bruce, A.G.: WaveShrink with firm shrinkage. Statist. Sinica 7(4), 855–874 (1997)
Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Acad. Press, New York (1999)
Moguchaya, T., Grip, N., Dechevsky, L.T., Bang, B., Lakså, A., Tong, B.: Curve and surface fitting by wavelet shrinkage using GM_Waves. In: Dæhlen, M., Mørken, K., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 263–274. Nashboro Press, Brentwood (2005)
Vidakovic, B.: Statistical Modeling by Wavelets. Wiley, New York (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dechevsky, L.T., Gundersen, J., Grip, N. (2010). Wavelet Compression, Data Fitting and Approximation Based on Adaptive Composition of Lorentz-Type Thresholding and Besov-Type Non-threshold Shrinkage. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_88
Download citation
DOI: https://doi.org/10.1007/978-3-642-12535-5_88
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12534-8
Online ISBN: 978-3-642-12535-5
eBook Packages: Computer ScienceComputer Science (R0)