Abstract
Many real world optimization problems are dynamic, meaning that their optimal solutions are time-varying. In recent years, an effective approach to address these problems has been the multi-swarmPSO (mPSO). Despite this, we believe that there is still room for improvement and, in this contribution we propose two simple strategies to increase the effectiveness of mPSO. The first one faces the diversity loss in the swarm after an environment change; while the second one increases the efficiency through stopping swarms showing a bad behavior. From the experiments performed on the Moving Peaks Benchmark, we have confirmed the benefits of our strategies.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Garcia del Amo, I., Pelta, D., Gonzalez, J., Novoa, P.: An analysis of particle properties on a multi-swarm pso for dynamic optimization problems. In: CAEPIA-TTIA (2009)
Angeline, P.: Tracking extrema in dynamic environments. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 335–345. Springer, Heidelberg (1997)
Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing: an international journal 7, 109–124 (2008)
Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)
Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE Press, Los Alamitos (1999)
Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization problems. In: Tsutsui, S., Ghosh, A. (eds.) Theory and Application of Evolutionary Computation: Recent Trends, pp. 239–262. Springer, Heidelberg (2002)
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Dasgupta, D., Mcgregor, D.: Nonstationary function optimization using the structured genetic algorithm. In: Parallel Problem Solving From Nature, pp. 145–154. Elsevier, Amsterdam (1992)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science MHS 1995, pp. 39–43. IEEE Press, Los Alamitos (1995)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995), doi:10.1109/ICNN.1995.488968, http://dx.doi.org/10.1109/ICNN.1995.488968 ,
Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: IEEE Congress on Evolutionary Computation, pp. 98–103 (2004)
Pelta, D., Sancho-Royo, A., Cruz, C., Verdegay, J.L.: Using memory and fuzzy rules in a co-operative multi-thread strategy for optimization. Information Sciences 176(13), 1849–1868 (2006)
Pelta, D., Cruz, C., Verdegay, J.: Simple control rules in a cooperative system for dynamic optimization problems. International Journal of General Systems 38(7), 701–717 (2009)
Xiangwei, Z., Hong, L.: A different topology multi-swarm pso in dynamic environment. In: IEEE International Symposium on IT in Medicine & Education, vol. 1, pp. 790–795 (2009), doi:10.1109/ITIME.2009.5236313
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Novoa-Hernández, P., Pelta, D.A., Corona, C.C. (2010). Improvement Strategies for Multi-swarm PSO in Dynamic Environments. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-12538-6_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12537-9
Online ISBN: 978-3-642-12538-6
eBook Packages: EngineeringEngineering (R0)