Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 284))

Abstract

We investigate the search properties of pre-evolutionary random catalytic reaction networks, where reactions might be reversible, and replication is not taken for granted. Since it counts only on slow growth rates and weak selective pressure to steer the search process, catalytic search is an inherently slow process. However it presents interesting properties worth exploring, such as the potential to steer the computation flow towards good solutions, and to prevent premature convergence. We have designed a simple catalytic search algorithm, in order to assess its beamed search ability. In this paper we report preliminary results that show that although weak, the search strength achieved with catalytic search is sufficient to solve simple problems, and to find good approximations for more complex problems, while keeping a diversity of solutions and their building blocks in the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Activation Energy, Wikipedia (2006), http://en.wikipedia.org/wiki/Activation_energy

  2. Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford (2002)

    Google Scholar 

  3. Bagley, R., Farmer, J., Fontana, W.: Evolution of a Metabolism. In: Artificial Life II, pp. 141–158. Addison-Wesley, Reading (1991)

    Google Scholar 

  4. Bagley, R.J., Farmer, J.: Spontaneous Emergence of a Metabolism. In: Artificial Life II, pp. 93–140. Addison-Wesley, Reading (1991)

    Google Scholar 

  5. Banzhaf, W.: The “Molecular” Traveling Salesman. Biological Cybernetics 64, 7–14 (1990)

    Article  MATH  Google Scholar 

  6. Banzhaf, W., Lasarczyk, C.: Genetic Programming of an Algorithmic Chemistry. In: O’Reilly, et al. (eds.) Genetic Programming Theory and Practice II, vol. 8, ch.11. pp. 175–190. Kluwer/Springer (2004)

    Google Scholar 

  7. Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent Computation by Catalytic Reactions. Nanotechnology 7, 307–314 (1996)

    Article  Google Scholar 

  8. Deckard, A., Sauro, H.M.: Preliminary Studies on the In Silico Evolution of Biochemical Networks. ChemBioChem. 5(10), 1423–1431 (2004)

    Article  Google Scholar 

  9. Dittrich, P., Banzhaf, W.: Self-Evolution in a Constructive Binary String System. Artificial Life 4, 203–220 (1909)

    Article  Google Scholar 

  10. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  11. Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)

    MATH  Google Scholar 

  12. Forrest, S.: Emergent Computation: Self-organizing, Collective, and Cooperative Phenomena in Natural and Artificial Computing Networks. Physica D 42(1-3), 1–11 (1990)

    Article  MathSciNet  Google Scholar 

  13. Gánti, T.: Chemoton Theory, Volume 1: Theoretical Foundations of Fluid Machineries. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  14. Kanada, Y.: Combinatorial Problem Solving Using Randomized Dynamic Composition of Production Rules. In: IEEE International Conference on Evolutionary Computation, pp. 467–472 (1995)

    Google Scholar 

  15. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  16. Lozano, M., Herrera, F., Cano, J.R.: Replacement Strategies to Preserve Useful Diversity in Steady-State Genetic Algorithms. Information Sciences 178(23), 4421–4433 (2008)

    Article  Google Scholar 

  17. Mattiussi, C., Waibel, M., Floreano, D.: Measures of Diversity for Populations and Distances Between Individuals with Highly Reorganizable Genomes. Evolutionary Computation 12(4), 495–515 (2004)

    Article  Google Scholar 

  18. Nowak, M.A., Ohtsuki, H.: Prevolutionary Dynamics and the Origin of Evolution. PNAS 105(39) (2008)

    Google Scholar 

  19. Paun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Piaseczny, W., Suzuki, H., Sawai, H.: Chemical Genetic Programming - Evolution of Amino Acid Rewriting Rules Used for Genotype-Phenotype Translation. In: Congress on Evolutionary Computation (CEC), vol. 2, pp. 1639–1646 (2004)

    Google Scholar 

  21. Suzuki, Y., Fujiwara, Y., Takabayashi, J., Tanaka, H.: Artificial Life Applications of a Class of P Systems: Abstract Rewriting Systems on Multisets. In: Workshop on Multiset Processing (WMP), pp. 299–346. Springer, London (2001)

    Chapter  Google Scholar 

  22. Weeks, A., Stepney, S.: Artificial Catalysed Reaction Networks for Search. In: ECAL Workshop on Artificial Chemistry (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamamoto, L. (2010). Evaluation of a Catalytic Search Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12538-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12537-9

  • Online ISBN: 978-3-642-12538-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics