Abstract
Automatically mapping natural language semantics into programming languages has always been a major and interesting challenge in Computer Science. In this paper, we approach such problem by carrying out mapping at syntactic level and then applying machine learning algorithms to derive an automatic translator of natural language questions into their associated SQL queries. To build the required training and test sets, we designed an algorithm, which, given an initial corpus of questions and their answers, semi-automatically generates the set of possible incorrect and correct pairs.
We encode such relational pairs in Support Vector Machines by means of kernel functions applied to the syntactic trees of questions and queries. The accurate results on automatic classification of the above pairs above, suggest that our approach captures the shared semantics between the two languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basili, R., Moschitti, A., Pazienza, M.: A text classifier based on linguistic processing. In: Proceedings of IJCAI 1999, Machine Learning for Information Filtering (1999)
Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of NAACL 2000 (2000)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In: Proceedings of ACL 2002 (2002)
Zhang, D., Lee, W.S.: Question classification using support vector machines. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 26–32. ACM Press, New York (2003)
Moschitti, A., Bejan, C.: A semantic kernel for predicate argument classification. In: CoNLL 2004, Boston, MA, USA (2004)
Moschitti, A., Coppola, B., Pighin, D., Basili, R.: Engineering of syntactic features for shallow semantic parsing. In: Proceedings of ACL 2005 Workshop on Feature Engineering for Machine Learning in NLP, USA (2005)
Moschitti, A., Pighin, D., Basili, R.: Tree kernels for semantic role labeling. Computational Linguistics 34(2), 193–224 (2008)
Moschitti, A., Quarteroni, S., Basili, R., Manandhar, S.: Exploiting syntactic and shallow semantic kernels for question/answer classification. In: Proceedings of ACL 2007, Prague, Czech Republic (2007)
Moschitti, A.: Kernel methods, syntax and semantics for relational text categorization. In: CIKM 2008: Proceeding of the 17th ACM conference on Information and knowledge management, pp. 253–262. ACM, New York (2008)
Moschitti, A., Zanzotto, F.: Fast and effective kernels for relational learning from texts. In: Ghahramani, Z. (ed.) Proceedings of the 24th Annual International Conference on Machine Learning, ICML 2007 (2007)
Popescu, A.M., Etzioni, O., Kautz, H.: Towards a theory of natural language interfaces to databases. In: Proceedings of the 2003 International Conference on Intelligent User Interfaces, Miami, pp. 149–157. Association for Computational Linguistics (2003)
Moschitti, A., Pighin, D., Basili, R.: Semantic role labeling via tree kernel joint inference. In: Proceedings of CoNLL-X, New York City (2006)
Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods (1999)
Chandra, Y., Mihalcea, R.: Natural language interfaces to databases, University of North Texas, Thesis, M.S. (2006)
Minock, M., Olofsson, P., Näslund, A.: Towards building robust natural language interfaces to databases. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 187–198. Springer, Heidelberg (2008)
Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In: Proceedings of the 21st ICCL and 44th Annual Meeting of the ACL, Sydney, Australia, July 2006, pp. 913–920. Association for Computational Linguistics (2006)
Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In: UAI, pp. 658–666 (2005)
Kudo, T., Matsumoto, Y.: Fast Methods for Kernel-Based Text Analysis. In: Hinrichs, E., Roth, D. (eds.) Proceedings of ACL, pp. 24–31 (2003)
Cumby, C., Roth, D.: Kernel Methods for Relational Learning. In: Proceedings of ICML 2003, Washington, DC, USA, pp. 107–114 (2003)
Culotta, A., Sorensen, J.: Dependency Tree Kernels for Relation Extraction. In: ACL 2004, Barcelona, Spain, pp. 423–429 (2004)
Kudo, T., Suzuki, J., Isozaki, H.: Boosting-based parse reranking with subtree features. In: Proceedings of ACL 2005, US (2005)
Toutanova, K., Markova, P., Manning, C.: The Leaf Path Projection View of Parse Trees: Exploring String Kernels for HPSG Parse Selection. In: Proceedings of EMNLP 2004, Barcelona, Spain (2004)
Kazama, J., Torisawa, K.: Speeding up Training with Tree Kernels for Node Relation Labeling. In: Proceedings of EMNLP 2005, Toronto, Canada, pp. 137–144 (2005)
Shen, L., Sarkar, A., Joshi, A.k.: Using LTAG Based Features in Parse Reranking. In: EMNLP, Sapporo, Japan (2003)
Zhang, M., Zhang, J., Su, J.: Exploring Syntactic Features for Relation Extraction using a Convolution tree kernel. In: Proceedings of NAACL, New York City, USA, pp. 288–295 (2006)
Zhang, D., Lee, W.: Question classification using support vector machines. In: Proceedings of SIGIR 2003, Toronto, Canada. ACM, New York (2003)
Giuglea, A.M., Moschitti, A.: Knowledge discovery using framenet, verbnet and propbank. In: Meyers, A. (ed.) Workshop on Ontology and Knowledge Discovering at ECML 2004, Pisa, Italy (2004)
Giuglea, A.M., Moschitti, A.: Semantic Role Labeling via Framenet, Verbnet and Propbank. In: Proceedings of ACL 2006, Sydney, Australia (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giordani, A., Moschitti, A. (2010). Semantic Mapping between Natural Language Questions and SQL Queries via Syntactic Pairing. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds) Natural Language Processing and Information Systems. NLDB 2009. Lecture Notes in Computer Science, vol 5723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12550-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-12550-8_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12549-2
Online ISBN: 978-3-642-12550-8
eBook Packages: Computer ScienceComputer Science (R0)