Abstract
Infrastructure services (Infrastructure-as-a-service), provided by cloud vendors, allow any user to provision a large number of compute instances fairly easily. Whether leased from public clouds or allocated from private clouds, utilizing these virtual resources to perform data/compute intensive analyses requires employing different parallel runtimes to implement such applications. Among many parallelizable problems, most “pleasingly parallel” applications can be performed using MapReduce technologies such as Hadoop, CGL-MapReduce, and Dryad, in a fairly easy manner. However, many scientific applications, which have complex communication patterns, still require low latency communication mechanisms and rich set of communication constructs offered by runtimes such as MPI. In this paper, we first discuss large scale data analysis using different MapReduce implementations and then, we present a performance analysis of high performance parallel applications on virtualized resources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/
GoGrid Cloud Hosting, http://www.gogrid.com/
Keahey, K., Foster, L, Freeman, T., Zhang, X.: Virtual Workspaces: Achieving Quality of Service and Quality of Life in the Grid. Scientific Programming Journal 13(4), 265–276 (2005); Special Issue: Dynamic Grids and Worldwide Computing
Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The Eucalyptus Open-source Cloud-computing System. In: CCGrid 2009: the 9th IEEE International Symposium on Cluster Computing and the Grid, Shanghai, China (2009)
Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP 2003, pp. 164–177. ACM, New York (2003), http://doi.acm.org/10.1145/945445.945462
Apache Hadoop, http://hadoop.apache.org/core/
Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel programs from sequential building blocks. In: European Conference on Computer Systems (2007)
Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.: Dryad-LINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. In: Symposium on Operating System Design and Implementation (OS-DI), San Diego, CA (2008)
Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analysis. In: Fourth IEEE International Conference on eScience, Indianapolis, pp. 277–284 (2008)
Huang, X., Madan, A.: CAP3: A DNA Sequence Assembly Program. Genome Research 9(9), 868–877 (1999)
Hartigan, J.: Clustering Algorithms. Wiley, Chichester (1975)
Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. ACM Commun. 51, 107–113 (2008)
MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/
Dongarra, J., Geist, A., Manchek, R., Sunderam, V.: Integrated PVM framework supports heterogeneous network computing. Computers in Physics 7(2), 166–175 (1993)
Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and Computation: Practice & Experience (2005)
Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research (Web Server issue), W729 (2006)
Raicu, I., Zhao, Y., Dumitrescu, C., Foster, L, Wilde, M.: Falkon: a Fast and Light-weight tasK executiON framework. In: Proceedings of the ACM/IEEE Conference on Supercom-puting, SC 2007, Nevada, ACM, New York (2007), http://doi.acm.org/10.1145/1362622.1362680
Pallickara, S., Pierce, M.: SWARM: Scheduling Large-Scale Jobs over the Loosely-Coupled HPC Clusters. In: Fourth IEEE International Conference on eScience, pp. 285–292 (2008)
Frey, J.: Condor DAGMan: Handling Inter-Job Dependencies, http://www.bo.infn.it/calcolo/condor/dagman/
Foster, I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In: Proceedings of the 7th international Euro-Par Conference Manchester on Parallel Processing (2001)
Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. SIGOPS Oper. Syst. Rev. 37(5), 29–43 (2003), http://doi.acm.org/10.1145/1165389.945450
Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework and Architecture for Enabling Durable Peer-to-Peer Grids. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 41–61. Springer, Heidelberg (2003)
Gu, Y., Grossman, R.: Sector and Sphere: The Design and Implementation of a High Performance Data Cloud. Philosophical Transactions A Special Issue associated with the UK e-Science All Hands Meeting (2008)
Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., Thain, D.: All-Pairs: An Abstraction for Data Intensive Computing on Campus Grids. IEEE Transactions on Parallel and Distributed Systems (2009)
Youseff, L., Wolski, R., Gorda, B., Krintz, C: Evaluating the Performance Impact of Xen on MPI and Process Execution For HPC Systems. In: Proceedings of the 2nd international Workshop on Virtualization Technology in Distributed Computing. IEEE Computer Society, Washington (2006), http://dx.doi.org/10.1109/VTDC.2006.4
Constantinos, E., Hill, N.: Cloud Computing for parallel Scientific HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2. In: Cloud Computing and Its Applications, Chicago, IL (2008)
Walker, E.: benchmarking Amazon EC2 for high-performance scientific computing, http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf
Gavrilovska, A., Kumar, S., Raj, K., Gupta, V., Nathuji, R., Niranjan, A., Saraiya, P.: High-Performance Hypervisor Architectures: Virtualization in HPC Systems. In: 1st Workshop on System-level Virtualization for High Performance Computing (2007)
Fox, G., Bae, S., Ekanayake, J., Qiu, X., Yuan, H.: Parallel Data Mining from Multicore to Cloudy Grids. In: High Performance Computing and Grids workshop (2008)
Johnsson, S., Harris, T., Mathur, K.: Matrix multiplication on the connection machine. In: Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing 1989, pp. 326–332. ACM, New York (1989), http://doi.acm.org/10.1145/76263.76298
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
About this paper
Cite this paper
Ekanayake, J., Fox, G. (2010). High Performance Parallel Computing with Clouds and Cloud Technologies. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds) Cloud Computing. CloudComp 2009. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12636-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-12636-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12635-2
Online ISBN: 978-3-642-12636-9
eBook Packages: Computer ScienceComputer Science (R0)