Abstract
One of the critical stages in drug development is the identification of potential side effects for promising drug leads. Large scale clinical experiments aimed at discovering such side effects are very costly and may miss subtle or rare side effects. To date, and to the best of our knowledge, no computational approach was suggested to systematically tackle this challenge. In this work we report on a novel approach to predict the side effects of a given drug. Starting from a query drug, a combination of canonical correlation analysis and network-based diffusion are applied to predict its side effects.
We evaluate our method by measuring its performance in cross validation using a comprehensive data set of 692 drugs and their known side effects derived from package inserts. For 34% of the drugs the top scoring side effect matches a known side effect of the drug. Remarkably, even on unseen data, our method is able to infer side effects that highly match existing knowledge. Our method thus represents a promising first step toward shortcutting the process and reducing the cost of side effect elucidation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lamb, J., Crawford, E., Peck, D., Modell, J., Blat, I., Wrobel, M., Lerner, J., Brunet, J., Subramanian, A., Ross, K., Reich, M., Hieronymus, H., Wei, G., Armstrong, S., Haggarty, S., Clemons, P., Wei, R., Carr, S., Lander, E., Golub, T.: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795), 1929–1935 (2006)
Campillos, M., Kuhn, M., Gavin, A., Jensen, L., Bork, P.: Drug target identification using side-effect similarity. Science 321(5886), 263–266 (2008)
Billingsley, M.: Druggable targets and targeted drugs: enhancing the development of new therapeutics. Pharmacology 82(4), 239–244 (2008)
Moore, T., Cohen, M., Furberg, C.: Serious adverse drug events reported to the food and drug administration, 1998-2005. Arch. Intern. Med. 167(16), 1752–1759 (2007)
Xie, L., Li, J., Bourne, P.: Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of cetp inhibitors. PLoS Comput. Biol. 5(5), e1000387 (2009)
Need, A., Motulsky, A., Goldstein, D.: Priorities and standards in pharmacogenetic research. Nat. Genet. 37(7), 671–681 (2005)
Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43(8), 691–698 (2006)
Franke, L., van Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., Wijmenga, C.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78(6), 1011–1025 (2006)
Kohler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)
Vanunu, O., Sharan, R.: A propagation-based algorithm for inferring gene-disease assocations. In: German Conference on Bioinformatics, pp. 54–52 (2008)
Wu, X., Jiang, R., Zhang, M.Q., Li, S.: Network-based global inference of human disease genes. Mol. Syst. Biol. 4, 189 (2008)
Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L., Vidal, M.: Drug-target network. Nat. Biotechnol. 25(10), 1119–1126 (2007)
Yang, L., Xu, L., He, L.: A citationrank algorithm inheriting google technology designed to highlight genes responsible for serious adverse drug reaction. Bioinformatics 25(17), 2244–2250 (2009)
Kutalik, Z., Beckmann, J.S., Bergmann, S.: A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat. Biotechnol. 26(5), 531–539 (2008)
Leurgans, S.E., Moyeed, R.A., Silverman, B.W.: Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society, Series B (Methodological) 55(3), 725–740 (1993)
Wolf, L., Donner, Y.: An experimental study of employing visual appearance as a phenotype. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (2008)
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, vol. 16, pp. 321–328. MIT Press, Cambridge (2004)
Lin, W.-H., Hauptmann, A.: Merging rank lists from multiple sources in video classification. In: Proc. IEEE International Conference on Multimedia and Expo ICME 2004, vol. 3, pp. 1535–1538 (2004)
Kuhn, M., Campillos, M., Letunic, I., Jensen, L., Bork, P.: A side effect resource to capture phenotypic effects of drugs (submitted), http://sideeffects.embl.de/
Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Dicuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D.J., Madden, T.L., Maglott, D.R., Miller, V., Ostell, J., Pruitt, K.D., Schuler, G.D., Shumway, M., Sequeira, E., Sherry, S.T., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusov, R.L., Tatusova, T.A., Wagner, L., Yaschenko, E.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 36(Database issue), D13–D21 (2008)
Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The chemistry development kit (cdk): an open-source java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)
Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E.L.: Recent developments of the chemistry development kit (cdk) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des. 12(17), 2111–2120 (2006)
Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Database issue), D901–D906 (2008)
Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J.: Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(Database issue), D668–D672 (2006)
Wexler, P.: Toxnet: an evolving web resource for toxicology and environmental health information. Toxicology 157(1-2), 3–10 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Atias, N., Sharan, R. (2010). An Algorithmic Framework for Predicting Side-Effects of Drugs. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-12683-3_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12682-6
Online ISBN: 978-3-642-12683-3
eBook Packages: Computer ScienceComputer Science (R0)