Skip to main content

An Algorithmic Framework for Predicting Side-Effects of Drugs

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6044))

Abstract

One of the critical stages in drug development is the identification of potential side effects for promising drug leads. Large scale clinical experiments aimed at discovering such side effects are very costly and may miss subtle or rare side effects. To date, and to the best of our knowledge, no computational approach was suggested to systematically tackle this challenge. In this work we report on a novel approach to predict the side effects of a given drug. Starting from a query drug, a combination of canonical correlation analysis and network-based diffusion are applied to predict its side effects.

We evaluate our method by measuring its performance in cross validation using a comprehensive data set of 692 drugs and their known side effects derived from package inserts. For 34% of the drugs the top scoring side effect matches a known side effect of the drug. Remarkably, even on unseen data, our method is able to infer side effects that highly match existing knowledge. Our method thus represents a promising first step toward shortcutting the process and reducing the cost of side effect elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lamb, J., Crawford, E., Peck, D., Modell, J., Blat, I., Wrobel, M., Lerner, J., Brunet, J., Subramanian, A., Ross, K., Reich, M., Hieronymus, H., Wei, G., Armstrong, S., Haggarty, S., Clemons, P., Wei, R., Carr, S., Lander, E., Golub, T.: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795), 1929–1935 (2006)

    Google Scholar 

  2. Campillos, M., Kuhn, M., Gavin, A., Jensen, L., Bork, P.: Drug target identification using side-effect similarity. Science 321(5886), 263–266 (2008)

    Article  Google Scholar 

  3. Billingsley, M.: Druggable targets and targeted drugs: enhancing the development of new therapeutics. Pharmacology 82(4), 239–244 (2008)

    Article  Google Scholar 

  4. Moore, T., Cohen, M., Furberg, C.: Serious adverse drug events reported to the food and drug administration, 1998-2005. Arch. Intern. Med. 167(16), 1752–1759 (2007)

    Article  Google Scholar 

  5. Xie, L., Li, J., Bourne, P.: Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of cetp inhibitors. PLoS Comput. Biol. 5(5), e1000387 (2009)

    Google Scholar 

  6. Need, A., Motulsky, A., Goldstein, D.: Priorities and standards in pharmacogenetic research. Nat. Genet. 37(7), 671–681 (2005)

    Article  Google Scholar 

  7. Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43(8), 691–698 (2006)

    Article  Google Scholar 

  8. Franke, L., van Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., Wijmenga, C.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78(6), 1011–1025 (2006)

    Article  Google Scholar 

  9. Kohler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  10. Vanunu, O., Sharan, R.: A propagation-based algorithm for inferring gene-disease assocations. In: German Conference on Bioinformatics, pp. 54–52 (2008)

    Google Scholar 

  11. Wu, X., Jiang, R., Zhang, M.Q., Li, S.: Network-based global inference of human disease genes. Mol. Syst. Biol. 4, 189 (2008)

    Article  Google Scholar 

  12. Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L., Vidal, M.: Drug-target network. Nat. Biotechnol. 25(10), 1119–1126 (2007)

    Article  Google Scholar 

  13. Yang, L., Xu, L., He, L.: A citationrank algorithm inheriting google technology designed to highlight genes responsible for serious adverse drug reaction. Bioinformatics 25(17), 2244–2250 (2009)

    Article  Google Scholar 

  14. Kutalik, Z., Beckmann, J.S., Bergmann, S.: A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat. Biotechnol. 26(5), 531–539 (2008)

    Article  Google Scholar 

  15. Leurgans, S.E., Moyeed, R.A., Silverman, B.W.: Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society, Series B (Methodological) 55(3), 725–740 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Wolf, L., Donner, Y.: An experimental study of employing visual appearance as a phenotype. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (2008)

    Google Scholar 

  17. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, vol. 16, pp. 321–328. MIT Press, Cambridge (2004)

    Google Scholar 

  18. Lin, W.-H., Hauptmann, A.: Merging rank lists from multiple sources in video classification. In: Proc. IEEE International Conference on Multimedia and Expo ICME 2004, vol. 3, pp. 1535–1538 (2004)

    Google Scholar 

  19. Kuhn, M., Campillos, M., Letunic, I., Jensen, L., Bork, P.: A side effect resource to capture phenotypic effects of drugs (submitted), http://sideeffects.embl.de/

  20. Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Dicuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D.J., Madden, T.L., Maglott, D.R., Miller, V., Ostell, J., Pruitt, K.D., Schuler, G.D., Shumway, M., Sequeira, E., Sherry, S.T., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusov, R.L., Tatusova, T.A., Wagner, L., Yaschenko, E.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 36(Database issue), D13–D21 (2008)

    Google Scholar 

  21. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The chemistry development kit (cdk): an open-source java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)

    Google Scholar 

  22. Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E.L.: Recent developments of the chemistry development kit (cdk) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des. 12(17), 2111–2120 (2006)

    Article  Google Scholar 

  23. Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Database issue), D901–D906 (2008)

    Google Scholar 

  24. Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J.: Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(Database issue), D668–D672 (2006)

    Google Scholar 

  25. Wexler, P.: Toxnet: an evolving web resource for toxicology and environmental health information. Toxicology 157(1-2), 3–10 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atias, N., Sharan, R. (2010). An Algorithmic Framework for Predicting Side-Effects of Drugs. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics