Skip to main content

Cactus Graphs for Genome Comparisons

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Abstract

We introduce a data structure, analysis and visualization scheme called a cactus graph for comparing sets of related genomes. Cactus graphs capture some of the advantages of de Bruijn and breakpoint graphs in one unified framework. They naturally decompose the common substructures in a set of related genomes into a hierarchy of chains that can be visualized as multiple alignments and nets that can be visualized in circular genome plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, W., Rosenbloom, K., Hardison, R.C., Hou, M., Taylor, J., Raney, B., Burhans, R., King, D.C., Baertsch, R., Blankenberg, D., Pond, S.L.K., Nekrutenko, A., Giardine, B., Harris, R.S., Tyekucheva, S., Diekhans, M., Pringle, T.H., Murphy, W.J., Lesk, A., Weinstock, G.M., Lindblad-Toh, K., Gibbs, R.A., Lander, E.S., Siepel, A., Haussler, D., Kent, W.J.: 28-way vertebrate alignment and conservation track in the ucsc genome browser. Genome Res. 17(12), 1797–1808 (2007)

    Article  Google Scholar 

  2. Paten, B., Herrero, J., Beal, K., Fitzgerald, S., Birney, E.: Enredo and pecan: Genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res. 18(11), 1814–1828 (2008)

    Article  Google Scholar 

  3. Carver, T., Thomson, N., Bleasby, A., Berriman, M., Parkhill, J.: Dnaplotter: circular and linear interactive genome visualization. Bioinformatics 25(1), 119–120 (2009)

    Article  Google Scholar 

  4. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., Marra, M.A.: Circos: an information aesthetic for comparative genomics. Genome Research 19(9), 1639–1645 (2009)

    Article  Google Scholar 

  5. Diskin, S.J., Hou, C., Glessner, J.T., Attiyeh, E.F., Laudenslager, M., Bosse, K., Cole, K., Mossé, Y.P., Wood, A., Lynch, J.E., Pecor, K., Diamond, M., Winter, C., Wang, K., Kim, C., Geiger, E.A., McGrady, P.W., Blakemore, A.I.F., London, W.B., Shaikh, T.H., Bradfield, J., Grant, S.F.A., Li, H., Devoto, M., Rappaport, E.R., Hakonarson, H., Maris, J.M.: Copy number variation at 1q21.1 associated with neuroblastoma. Nature 459(7249), 987–991 (2009)

    Article  Google Scholar 

  6. Bignell, G.R., Santarius, T., Pole, J.C.M., Butler, A.P., Perry, J., Pleasance, E., Greenman, C., Menzies, A., Taylor, S., Edkins, S., Campbell, P., Quail, M., Plumb, B., Matthews, L., McLay, K., Edwards, P.A.W., Rogers, J., Wooster, R., Futreal, P.A., Stratton, M.R.: Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Research 17(9), 1296–1303 (2007)

    Article  Google Scholar 

  7. Hampton, O.A., Hollander, P.D., Miller, C.A., Delgado, D.A., Li, J., Coarfa, C., Harris, R.A., Richards, S., Scherer, S.E., Muzny, D.M., Gibbs, R.A., Lee, A.V., Milosavljevic, A.: A sequence-level map of chromosomal breakpoints in the mcf-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Research 19(2), 167–177 (2009)

    Article  Google Scholar 

  8. Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W., Haussler, D.: Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 100(20), 11484–11489 (2003)

    Article  Google Scholar 

  9. Harary, F., Uhlenbeck, G.: On the number of husimi trees, i. Proceedings of the National Academy of Sciences 39, 315–322 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. J. Comput. Biol. 13(7), 1340–1354 (2006)

    Article  MathSciNet  Google Scholar 

  11. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

    Google Scholar 

  12. Korneyenko, N.M.: Combinatorial algorithms on a class of graphs. Discrete Applied Mathematics, 109–111 (1994)

    Google Scholar 

  13. Zamazek, B., Zerovnik, J.: Estimating the traffic on weighted cactus networks in linear time. In: Ninth International Conference on Information Visualisation (IV 2005), pp. 536–541 (2005)

    Google Scholar 

  14. Ben-Moshe, B., Bhattacharya, B.: Efficient algorithms for the weighted 2-center problem in a cactus graph. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 693–703. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Tetsuo, N.: On the number of solutions of a class of nonlinear resistive circuit. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Singapore, pp. 766–769 (1991)

    Google Scholar 

  16. Alekseyev, M.A., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions. Genome Research 19(5), 943–957 (2009)

    Article  Google Scholar 

  17. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna fragment assembly. Proc. Natl. Acad. Sci. USA 98(17), 9748–9753 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Raphael, B., Zhi, D., Tang, H., Pevzner, P.: A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Res. 14(11), 2336–2346 (2004)

    Article  Google Scholar 

  19. Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theory Comput. Syst. 40(2), 125–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lunter, G., Rocco, A., Mimouni, N., Heger, A., Caldeira, A., Hein, J.: Uncertainty in homology inferences: assessing and improving genomic sequence alignment. Genome Res. 18(2), 298–309 (2008)

    Article  Google Scholar 

  21. ENCODE-Consortium: Identification and analysis of functional elements in 1 genome by the encode pilot project. Nature 447(7146), 799–816 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paten, B. et al. (2010). Cactus Graphs for Genome Comparisons. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics