Skip to main content

Hierarchical Generative Biclustering for MicroRNA Expression Analysis

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6044))

Abstract

Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous and yet flexible, and computations feasible. The formulation additionally offers a natural information retrieval relevance measure that allows relating samples in a principled manner. We show that the model outperforms other four biclustering procedures in a large miRNA data set. We also demonstrate the model’s added interpretability and information retrieval capability in a case study that highlights the potential and novel role of miR-224 in the association between melanoma and non-Hodgkin lymphoma. Software is publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster Analysis and Display of Genome-Wide Expression Patterns. P. Natl. Acad. Sci. U.S.A. 95, 14863–14868 (1998)

    Article  Google Scholar 

  2. Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)

    Article  Google Scholar 

  3. Jordan, M.I. (ed.): Learning in Graphical Models. MIT Press, Cambridge (1999)

    Google Scholar 

  4. Flaherty, P., et al.: A Latent Variable Model for Chemogenomic Profiling. Bioinformatics 21, 3286–3293 (2005)

    Article  Google Scholar 

  5. Gerber, G.K., et al.: Automated Discovery of Functional Generality of Human Gene Expression Programs. PLoS Comput. Biol. 3, 1426–1440 (2007)

    Article  MathSciNet  Google Scholar 

  6. Lu, J., et al.: MicroRNA Expression Profiles Classify Human Cancers. Nature 435, 834–838 (2005)

    Article  Google Scholar 

  7. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The Nested Chinese Restaurant Process and Bayesian Inference of Topic Hierarchies. J. ACM (to appear)

    Google Scholar 

  8. Aldous, D.: Exchangeability and Related Topics. In: École d’été de probabilités de Saint-Flour, XIII, pp. 1–198. Springer, Berlin (1985)

    Google Scholar 

  9. Miller, K.T., Griffiths, T.L., Jordan, M.I.: The Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features. In: McAllester, D., Myllymaki, P. (eds.) Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pp. 403–410. AUAI Press, Corvallis (2008)

    Google Scholar 

  10. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  11. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton (1996)

    MATH  Google Scholar 

  12. Liu, J.S.: The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem. J. Am. Stat. Assoc. 89, 958–966 (1994)

    Article  MATH  Google Scholar 

  13. Escobar, M.D., West, M.: Bayesian Density Estimation and Inference Using Mixtures. J. Am. Stat. Assoc. 90, 577–588 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet Processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Antoniak, C.E.: Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems. Ann. Stat. 2, 1152–1174 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buntine, W., et al.: A Scalable Topic-Based Open Source Search Engine. In: Zhong, N., et al. (eds.) Proceedings of the IEEE/WIC/ACM Conference on Web Intelligence, pp. 228–234. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  17. Tanay, A., Sharan, R., Shamir, R.: Discovering Statistically Significant Biclusters in Gene Expression Data. Bioinformatics 18, S136–S144 (2002)

    Google Scholar 

  18. Lazzeroni, L., Owen, A.: Plaid Models for Gene Expression Data. Stat. Sinica 12, 61–86 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Cheng, Y., Church, G.M.: Biclustering of Expression Data. In: Bourne, P., et al. (eds.) Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103. AAAI Press, Menlo Park (2000)

    Google Scholar 

  20. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem. In: Istrail, S., Waterman, M.S., Clark, A.G. (eds.) Proceedings of the Sixth Annual International Conference on Computational Biology, pp. 49–57. ACM, New York (2002)

    Google Scholar 

  21. Landgraf, P., et al.: A Mammalian MicroRNA Expression Atlas Based on Small RNA Library Sequencing. Cell 129, 1401–1414 (2007)

    Article  Google Scholar 

  22. Papadopoulos, G.L., Reczko, M., Simossis, V.A., Sethupathy, P., Hatzigeorgiou, A.G.: The Database of Experimentally Supported Targets: A Functional Update of TarBase. Nucleic Acids Res. 37, D155–D158 (2008)

    Google Scholar 

  23. Ashburner, M., et al.: Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  24. Caldas, J., et al.: Probabilistic Retrieval and Visualization of Biologically Relevant Microarray Experiments. Bioinformatics 25, i145–i153 (2009)

    Google Scholar 

  25. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  26. Lens, M.B., Newton-Bishop, J.A.: An Association Between Cutaneous Melanoma and Non-Hodgkin’s Lymphoma: Pooled Analysis of Published Data with a Review. Ann. Oncol. 16, 460–465 (2004)

    Article  Google Scholar 

  27. Wang, Y., Lee, C.G.L.: MicroRNA and Cancer: Focus on Apoptosis. J. Cell. Mol. Med. 13, 12–23 (2009)

    Article  Google Scholar 

  28. Su, D.M., et al.: Two Types of Human Malignant Melanoma Cell Lines Revealed by Expression Patterns of Mitochondrial and Survival-Apoptosis Genes: Implications for Malignant Melanoma Therapy. Mol. Cancer Ther. 8, 1292–1304 (2009)

    Article  Google Scholar 

  29. Kertesz, M., et al.: The Role of Site Accessibility in MicroRNA Target Recognition. Nat. Genet. 39, 1278–1284 (2007)

    Article  Google Scholar 

  30. Wang, Y., et al.: Profiling MicroRNA Expression in Hepatocellular Carcinoma Reveals MicroRNA-224 Up-regulation and Apoptosis Inhibitor-5 as a MicroRNA-224-specific Target. J. Biol. Chem. 283, 13205–13215 (2008)

    Article  Google Scholar 

  31. Van den Berghe, L., et al.: FIF [Fibroblast Growth Factor-2 (FGF-2)-Interacting-Factor], a Nuclear Putatively Antiapoptotic Factor, Interacts Specifically with FGF-2. Mol. Endochrinol. 14, 1709–1724 (2000)

    Article  Google Scholar 

  32. Krejci, P., et al.: FGF-2 Expression and its Action in Human Leukemia and Lymphoma Cell Lines. Leukemia 17, 817–819 (2002)

    Google Scholar 

  33. Mees, S.T., et al.: Involvement of CD40 Targeting Mir-224 and Mir-486 on the Progression of Pancreatic Ductal Adenocarcinomas. Ann. Surg. Oncol. 16, 2339–2350 (2009)

    Article  Google Scholar 

  34. French, R.R., et al.: CD40 Antibody Evokes a Cytotoxic T-Cell Response that Eradicates Lymphoma and Bypasses T-Cell Help. Nat. Med. 5, 548–553 (1999)

    Article  Google Scholar 

  35. Pirozzi, G., et al.: CD40 Expressed on Human Melanoma Cells Mediates T Cell Co-Stimulation and Tumor Cell Growth. Int. Immunol. 12, 787–795 (2000)

    Article  Google Scholar 

  36. Rigou, P., et al.: The Antiapoptotic Protein AAC-11 Interacts with and Regulates Acinus-Mediated DNA Fragmentation. EMBO J. 28, 1576–1588 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caldas, J., Kaski, S. (2010). Hierarchical Generative Biclustering for MicroRNA Expression Analysis. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics