Abstract
Face recognition is one of the most active research areas in pattern recognition for the last decades because of its potential applications as well as scientific challenges. Although numerous methods for face recognition have been developed, recognition accuracy and speed still remain a problem. In this paper, we propose a novel method for fast and accurate face recognition. The contribution of the paper is three folds: 1) we propose a new method for facial feature extraction named the Compact Binary Patterns (CBP), which is a more compact and efficient generalization of Local Binary Patterns. 2) We show that Whitened Principal Component Analysis (WPCA) is a simple but very efficient way to enhance CBP features. 3) To further improve the recognition rate, we divide a face into patches and perform recognition using multiple classifiers, whose weights are estimated by a Memetic Algorithm. Our method is tested thoroughly on the FERET dataset and achieves promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adini, Y., Moses, Y., Ullman, S.: Face Recognition: The Problem of Compensating for Changes in Illumination Direction. IEEE Transactions PAMI 19(7), 721–732 (1997)
Ahonen, T., Hadid, A., Pietikainen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions PAMI 28(12), 2037–2041 (2006)
Bai, L., Shen, L.: InfoBoost for Selecting Discriminative Gabor Features. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 423–432. Springer, Heidelberg (2005)
Chellappa, R., Wilson, C., Sirohey, S., et al.: Human and machine recognition of faces: a survey. Proceedings of the IEEE 83(5), 705–740 (1995)
Deng, W., Hu, J., Guo, J.: Gabor-Eigen-Whiten-Cosine: A Robust Scheme for Face Recognition. In: Zhao, W., Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, pp. 336–349. Springer, Heidelberg (2005)
Hieu, N., Bai, L., Shen, L.: Local Gabor binary pattern whitened pca: A novel approach for face recognition from single image per person. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 269–278. Springer, Heidelberg (2009)
Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Transactions PAMI 16(1), 66–75 (1994)
Lades, M., Vorbruggen, J., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42(3), 300–311 (1993)
Liu, C.: Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Transactions PAMI 26(5), 572–581 (2004)
Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Transactions PAMI 19(7), 696–710 (1997)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report (1989)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions PAMI 24(7), 971–987 (2002)
Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)
Pentland, A., Starner, T., Etcoff, N., Masoiu, N., Oliyide, O., Turk, M.: Experiments with eigenfaces. In: Looking at People Workshop, IJCAI 1993, Chamberry, France (1993)
Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions PAMI 2(10), 1090–1104 (2000)
Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16(5), 295–306 (1998)
Shan, S., Gao, W., Chang, Y., Cao, B., Yang, P.: Review the strength of Gabor features for face recognition from the angle of its robustness to mis-alignment. In: 17th International Conference on Pattern Recognition (ICPR 2004), vol. 1, pp. 338–341 (2004)
Shen, L., Bai, L.: MutualBoost learning for selecting Gabor features for face recognition. Pattern Recognition Letters 27(15), 1758–1767 (2006)
Shen, L., Bai, L.: A SVM face recognition method based on optimized Gabor features. In: Qiu, G., Leung, C., Xue, X.-Y., Laurini, R. (eds.) VISUAL 2007. LNCS, vol. 4781, pp. 165–174. Springer, Heidelberg (2007)
Shen, L., Bai, L., Fairhurst, M.: Gabor wavelets and general discriminant analysis for face identification and verification. Image and Vision Computing 27, 1758–1767 (2006)
Shor, P.W.: A new proof of Cayley’s formula for counting labeled trees. J. Comb. Theory Ser. A 71(1), 154–158 (1995)
Su, Y., Shan, S., Chen, X., Gao, W.: Patch-based gabor fisher classifier for face recognition. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 528–531 (2006)
Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Transactions PAMI 20(1), 39–51 (1998)
Wiskott, L., Fellous, J., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions PAMI 19(7), 775–779 (1997)
Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 786–791 (2005)
Zou, J., Ji, Q., Member, S., Nagy, G.: A comparative study of local matching approach for face recognition. IEEE Transactions PAMI 16, 2617–2628 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, H.V., Bai, L. (2010). Compact Binary Patterns (CBP) with Multiple Patch Classifiers for Fast and Accurate Face Recognition. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-12712-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12711-3
Online ISBN: 978-3-642-12712-0
eBook Packages: Computer ScienceComputer Science (R0)