Skip to main content

Circular Acquisition to Define the Minimal Set of Projections for Optimal MRI Reconstruction

  • Conference paper
Computational Modeling of Objects Represented in Images (CompIMAGE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6026))

Abstract

An acquisition technique for optimal MRI reconstruction from projections is presented. It consists of the acquisition of two circular paths which are used to calculate the most informative directions to be acquired. The selection of the acquisition angles is performed where the information content is maximal. The information content is directly evaluated using the power spectra of the k-space samples acquired by the circular paths. The method makes it possible to reduce the total acquisition time without degradation of the reconstructed image and it adapts to the arbitrary shape of the sample. For these reasons, it is particularly useful in those applications where acquisition from projections is strongly recommended for saving acquisition time, in particular for fMRI. The method has been tested on experimental data collected by a commercial MRI apparatus and compared with other adaptive acquisition sampling schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, R.A., di Chiro, G.: Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys. Med. Biol. 21, 689–732 (1976)

    Article  Google Scholar 

  2. DeYoe, E.A., Bandettini, P., Miller, D., Winans, P.: Functional magnetic resonance imaging (FMRI) of the human brain. J. Neurosci. Methods 54(2), 171–187 (1994)

    Article  Google Scholar 

  3. Fischer, M.C., Spector, Z.Z., Ishii, M., Yu, J., Emami, K., Itkin, M., Rizi, R.: Single acquisition sequence for the measurement of oxygen partial pressure by hyperpolarized gas MRI. Magn. Reson. Med. 52, 766–773 (2004)

    Article  Google Scholar 

  4. Kim, R.J., Fieno, D.S., Parrish, R.B., Harris, K., Simonetti, O., Bundy, J., Finn, J.P., Klocke, F.J., Judd, R.M.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100, 1992–2002 (1999)

    Google Scholar 

  5. Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, D.N., Kennedy, B.P., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H., Brady, T.J., Rosen, B.R.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Nat. Acad. Sci. 89, 5675–5679 (1992)

    Article  Google Scholar 

  6. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)

    Article  Google Scholar 

  7. Ledermann, H.P., Heidecker, H.G., Schulte, A.C., Thalhammer, C., Aschwanden, M., Jaeger, K.A., Scheffler, K., Bilecen, D.: Calf muscles imaged at BOLD MR: correlation with TcPO2 and flowmetry measurements during ischemia and reactive hyperemia—initial experience. Radiology 241(2), 477–484 (2006)

    Article  Google Scholar 

  8. Lima, J.A.C., Judd, R.M., Bazille, A., Schulman, S.P., Atalar, E., Zerhouni, E.A.: Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI: Potential Mechanisms. Circulation 92, 1117–1125 (1995)

    Google Scholar 

  9. Mitchell, D.G.: Fast MR imaging techniques: impact in the abdomen. J. Magn. Reson. Imag. 6, 812–821 (1996)

    Article  Google Scholar 

  10. Nishimura, D., Macovski, A., Jackson, J.I., Hu, R.S., Stevick, C.A., Axel, L.: Magnetic resonance angiography by selective inversion recovery using a compact gradient echo sequence. Magn. Reson. Med. 8, 96–103 (1988)

    Article  Google Scholar 

  11. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain Magnetic resonance imaging with contrast, dependent on blood oxygenation. Proc. Nat. Acad. Sci. 87, 9868–9872 (1990)

    Article  Google Scholar 

  12. Ordidge, R.J., Coxon, R., Howseman, A., Chapman, B., Turner, R., Stehling, M., Mansfield, P.: Snapshot head imaging at 0.5 T using the echo planar technique. Magn. Reson. Med. 8, 110–115 (1988)

    Article  Google Scholar 

  13. Pauli, J.M., Conolly, S., Nishimura, D., Macovski, A.: A. Slice-selective excitation for very short T2 species. In: Proc. Eighth Annual Meeting, Society of Magnetic Resonance in Medicine, vol. 28 (1989)

    Google Scholar 

  14. Placidi, G., Alecci, M., Colacicchi, S., Sotgiu, A.: Fourier reconstruction as a valid alternative to filtered back projection in iterative applications: implementation of Fourier spectral spatial EPR imaging. J. Magn. Reson. 134, 280–286 (1998)

    Article  Google Scholar 

  15. Placidi, G., Alecci, M., Sotgiu, A.: ω-space adaptive acquisition technique for magnetic resonance imaging from projections. J. Magn. Reson. 143(1), 197–207 (2000)

    Article  Google Scholar 

  16. Riederer, S.J.: Recent technical advances in MR imaging of the abdomen. J. Magn. Reson. Imag. 6, 822–832 (1996)

    Article  Google Scholar 

  17. Roberts, D.A., Gefter, W.B., Hirsch, J.A., Rizi, R.R., Dougherty, L., Lenkinski, R.E., Leigh Jr., J.S., Schnall, M.D.: Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging—preliminary results in healthy volunteers. Radiology 212(3), 890–895 (1999)

    Google Scholar 

  18. Smits, M., Visch-Brink, E., Schraa-Tam, C.K., Koudstaal, P.J., van der Lugt, A.: Functional MR imaging of language processing: an overview of easy-to-implement paradigms for patient care and clinical research. RadioGr. 26(suppl.1), S145–S158 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Placidi, G. (2010). Circular Acquisition to Define the Minimal Set of Projections for Optimal MRI Reconstruction. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics