Skip to main content

Connectedness of Offset Digitizations in Higher Dimensions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6026))

Abstract

In this paper we investigate properties of a digital object obtained by taking the integer points within an offset of a certain radius of the object. Our considerations apply to digitizations of arbitrary path-connected sets in an arbitrary dimension n. Corollaries are derived for the important special case of surfaces, as well as for offsets of disconnected sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65(1-3), 92–111 (2003)

    Article  MATH  Google Scholar 

  2. Andres, E.: Discrete circles, rings and spheres. Computers & Graphics 18(5), 695–706 (1994)

    Article  Google Scholar 

  3. Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)

    Article  Google Scholar 

  4. Anton, F.: Voronoi Diagrams of Semi-algebraic Sets. Ph.D. thesis, The University of British Columbia, Vancouver, British Columbia, Canada (2004)

    Google Scholar 

  5. Anton, F., Emiris, I., Mourrain, B., Teillaud, M.: The offset to an algebraic curve and an application to conics. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 683–696. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Arrondo, E., Sendra, J., Sendra, J.R.: Genus formula for generalized offset curves. J. Pure and Applied Algebra 136(3), 199–209 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brimkov, V.E., Barneva, R.P., Brimkov, B., de Vieilleville, F.: Offset approach to defining 3D digital lines. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 678–687. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Brimkov, V.E., Barneva, R.P., Brimkov, B.: Minimal offsets that guarantee maximal or minimal connectivity of digital curves in nD. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 337–349. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Computer Graphics & Applications 17(6), 80–87 (1997)

    Article  Google Scholar 

  10. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)

    MATH  Google Scholar 

  11. Debled-Rennesson, I.: Etude et Reconnaissance des Droites et Plans Discrets. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France (1995)

    Google Scholar 

  12. Debled-Rennesson, I., Domenjoud, E., Jamet, D.: Arithmetic discrete parabolas. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 480–489. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Figueiredo, O., Reveillès, J.-P.: New results about 3D digital lines. In: Melter, R.A., Wu, A.Y., Latecki, L. (eds.) Internat. Conference Vision Geometry V. SPIE, vol. 2826, pp. 98–108 (1996)

    Google Scholar 

  14. Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete circles: An arithmetical approach based on norms. In: Internat. Conference Vision-Geometry XIV. San Jose, CA. SPIE, vol. 6066, 60660C (2006)

    Google Scholar 

  15. Hoffmann, C.M., Vermeer, P.J.: Eliminating extraneous solutions for the sparse resultant and the mixed volume. J. Symbolic Geom. Appl. 1(1), 47–66 (1991)

    MATH  MathSciNet  Google Scholar 

  16. Jonas, A., Kiryati, N.: Digital representation schemes for 3D curves. Pattern Recognition 30(11), 1803–1816 (1997)

    Article  Google Scholar 

  17. Kim, C.E.: Three dimensional digital line segments. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2), 231–234 (1983)

    Article  MATH  Google Scholar 

  18. Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  19. Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)

    Google Scholar 

  20. Menger, K.: Kurventheorie. Teubner (1932)

    Google Scholar 

  21. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)

    Google Scholar 

  22. Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(3), 146–160 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rosenfeld, A.: Arcs and curves in digital pictures. Journal of the ACM 20(1), 81–87 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Toutant, J.-L.: Characterization of the closest discrete approximation of a line in the 3-dimensional space. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 618–627. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Urysohn, O.: Über die allegemeinen Cantorischen Kurven. In: Proc. Ann. Meeting, Deutsche Mathematiker Vereinigung (1923)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brimkov, V.E. (2010). Connectedness of Offset Digitizations in Higher Dimensions. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics