Abstract
In this paper we investigate properties of a digital object obtained by taking the integer points within an offset of a certain radius of the object. Our considerations apply to digitizations of arbitrary path-connected sets in an arbitrary dimension n. Corollaries are derived for the important special case of surfaces, as well as for offsets of disconnected sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65(1-3), 92–111 (2003)
Andres, E.: Discrete circles, rings and spheres. Computers & Graphics 18(5), 695–706 (1994)
Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)
Anton, F.: Voronoi Diagrams of Semi-algebraic Sets. Ph.D. thesis, The University of British Columbia, Vancouver, British Columbia, Canada (2004)
Anton, F., Emiris, I., Mourrain, B., Teillaud, M.: The offset to an algebraic curve and an application to conics. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 683–696. Springer, Heidelberg (2005)
Arrondo, E., Sendra, J., Sendra, J.R.: Genus formula for generalized offset curves. J. Pure and Applied Algebra 136(3), 199–209 (1999)
Brimkov, V.E., Barneva, R.P., Brimkov, B., de Vieilleville, F.: Offset approach to defining 3D digital lines. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 678–687. Springer, Heidelberg (2008)
Brimkov, V.E., Barneva, R.P., Brimkov, B.: Minimal offsets that guarantee maximal or minimal connectivity of digital curves in nD. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 337–349. Springer, Heidelberg (2009)
Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Computer Graphics & Applications 17(6), 80–87 (1997)
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)
Debled-Rennesson, I.: Etude et Reconnaissance des Droites et Plans Discrets. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France (1995)
Debled-Rennesson, I., Domenjoud, E., Jamet, D.: Arithmetic discrete parabolas. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 480–489. Springer, Heidelberg (2006)
Figueiredo, O., Reveillès, J.-P.: New results about 3D digital lines. In: Melter, R.A., Wu, A.Y., Latecki, L. (eds.) Internat. Conference Vision Geometry V. SPIE, vol. 2826, pp. 98–108 (1996)
Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete circles: An arithmetical approach based on norms. In: Internat. Conference Vision-Geometry XIV. San Jose, CA. SPIE, vol. 6066, 60660C (2006)
Hoffmann, C.M., Vermeer, P.J.: Eliminating extraneous solutions for the sparse resultant and the mixed volume. J. Symbolic Geom. Appl. 1(1), 47–66 (1991)
Jonas, A., Kiryati, N.: Digital representation schemes for 3D curves. Pattern Recognition 30(11), 1803–1816 (1997)
Kim, C.E.: Three dimensional digital line segments. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2), 231–234 (1983)
Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)
Menger, K.: Kurventheorie. Teubner (1932)
Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)
Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(3), 146–160 (1970)
Rosenfeld, A.: Arcs and curves in digital pictures. Journal of the ACM 20(1), 81–87 (1973)
Toutant, J.-L.: Characterization of the closest discrete approximation of a line in the 3-dimensional space. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 618–627. Springer, Heidelberg (2006)
Urysohn, O.: Über die allegemeinen Cantorischen Kurven. In: Proc. Ann. Meeting, Deutsche Mathematiker Vereinigung (1923)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brimkov, V.E. (2010). Connectedness of Offset Digitizations in Higher Dimensions. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-12712-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12711-3
Online ISBN: 978-3-642-12712-0
eBook Packages: Computer ScienceComputer Science (R0)