Skip to main content

A Feasibility Study on Low Level Techniques for Improving Parsing Accuracy for Spanish Using Maltparser

  • Conference paper
Artificial Intelligence: Theories, Models and Applications (SETN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6040))

Included in the following conference series:

Abstract

In the last years dependency parsing has been accomplished by machine learning–based systems showing great accuracy but usually under 90% for Labelled Attachment Score (LAS). Maltparser is one of such systems. Machine learning allows to obtain parsers for every language having an adequate training corpus. Since generally such systems can not be modified the following question arises: Can we beat this 90% LAS by using better training corpora? Some previous work points that high level techniques are not sufficient for building more accurate training corpora. Thus, by analyzing the words that are more frequently incorrectly attached or labelled, we study the feasibility of some low level techniques, based on n–version parsing models, in order to obtain better parsing accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buchholz, S., Marsi, E.: CoNLL–X Shared Task on Multilingual Dependency Parsing. In: Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL–X), pp. 149–164 (2006)

    Google Scholar 

  2. Ballesteros, M., Herrera, J., Francisco, V., Gervás, P.: Improving Parsing Accuracy for Spanish using Maltparser. Journal of the Spanish Society for Natural Language Processing (SEPLN) 44 (in press, 2010)

    Google Scholar 

  3. Herrera, J., Gervás, P.: Towards a Dependency Parser for Greek Using a Small Training Data Set. Journal of the Spanish Society for Natural Language Processing (SEPLN) 41, 29–36 (2008)

    Google Scholar 

  4. Herrera, J., Gervás, P., Moriano, P.J., Moreno, A., Romero, L.: Building Corpora for the Development of a Dependency Parser for Spanish Using Maltparser. Journal of the Spanish Society for Natural Language Processing (SEPLN) 39, 181–186 (2007)

    Google Scholar 

  5. Herrera, J., Gervás, P., Moriano, P.J., Moreno, A., Romero, L.: JBeaver: un Analizador de Dependencias para el Español Basado en Aprendizaje. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 211–220. Springer, Heidelberg (2007)

    Google Scholar 

  6. Nivre, J., Hall, J., Nilsson, J.: Memory–based Dependency Parsing. In: Proceedings of CoNLL–2004, Boston, MA, USA, pp. 49–56 (2004)

    Google Scholar 

  7. Eisner, J.: Three New Probabilistic Models for Dependency Parsing: An Exploration. In: Proceedings of the 16th International Conference on Computational Linguistics (COLING 1996), Copenhagen, pp. 340–345 (1996)

    Google Scholar 

  8. Yamada, H., Matsumoto, Y.: Statistical Dependency Analysis with Support Vector Machines. In: Proceedings of International Workshop of Parsing Technologies (IWPT 2003), pp. 195–206 (2003)

    Google Scholar 

  9. Palomar, M., Civit, M., Díaz, A., Moreno, L., Bisbal, E., Aranzabe, M., Ageno, A., Martí, M.A., Navarro, B.: 3LB: Construcción de una Base de Datos de Árboles Sintáctico–Semánticos para el Catalán, Euskera y Español. In: Proceedings of the XX Conference of the Spanish Society for Natural Language Processing (SEPLN), Sociedad Española para el Procesamiento del Lenguaje Natural, pp. 81–88 (2004)

    Google Scholar 

  10. Taulé, M., Martí, M., Recasens, M.: AnCora: Multilevel Annotated Corpora for Catalan and Spanish. In: Proceedings of 6th International Conference on Language Resources and Evaluation (2008)

    Google Scholar 

  11. McDonald, R., Lerman, K., Pereira, F.: Multilingual Dependency Analysis with a Two-Stage Discriminative Parser. In: Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL–X), pp. 216–220 (2006)

    Google Scholar 

  12. Nivre, J., Hall, J., Nilsson, J., Eryiğit, G., Marinov, S.: Labeled Pseudo–Projective Dependency Parsing with Support Vector Machines. In: Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL–X), pp. 221–225 (2006)

    Google Scholar 

  13. Johansson, R., Nugues, P.: Investigating Multilingual Dependency Parsing. In: Proceedings of the Conference on Computational Natural Language Learning, CoNLL–X (2006)

    Google Scholar 

  14. Wu, Y., Lee, Y., Yang, J.: The Exploration of Deterministic and Efficient Dependency Parsing. In: Proceedings of the Conference on Computational Natural Language Learning, CoNLL–X (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ballesteros, M., Herrera, J., Francisco, V., Gervás, P. (2010). A Feasibility Study on Low Level Techniques for Improving Parsing Accuracy for Spanish Using Maltparser. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds) Artificial Intelligence: Theories, Models and Applications. SETN 2010. Lecture Notes in Computer Science(), vol 6040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12842-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12842-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12841-7

  • Online ISBN: 978-3-642-12842-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics