Skip to main content

A Human-Centered Computing Framework to Enable Personalized News Video Recommendation

  • Chapter
Video Search and Mining

Part of the book series: Studies in Computational Intelligence ((SCI,volume 287))

  • 948 Accesses

Abstract

In this chapter, an interactive framework is developed to enable personalized news video recommendation and allow news seekers to access large-scale news videos more effectively. First, multiple information sources (audio, video and closed captions) are seamlessly integrated and synchronized to achieve more reliable news topic detection, and the inter-topic contextual relationships are extracted automatically for characterizing the interestingness of the news topics more effectively. Second, topic network (i.e., news topics and their inter-topic contextual relationships) and hyperbolic visualization are seamlessly integrated to achieve more effective navigation and exploration of large-scale news videos at the topic level, so that news seekers can have a good global overview of large-scale collections of news videos at the first glance. Through a hyperbolic approach for interactive topic network visualization and navigation, large amounts of news topics and their contextual relationships are visible on the display screen, and thus news seekers can obtain the news topics of interest interactively, build up their mental search models easily and make better search decisions by selecting the visible news topics directly. Our system can also capture the search intentions of news seekers implicitly and further recommend the most relevant news videos according to their importance and representativeness scores. Our experiments on large-scale news videos (10 TV news programs for more than 3 months) have provided very positive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marchionini, G.: Information seeking in electronic environments. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Fan, J., Keim, D., Gao, Y., Luo, H., Li, Z.: JustClick: Personalized Image Recommendation via Exploratory Search from Large-Scale Flickr Images. IEEE Trans. on Circuits and Systems for Video Technology 19(2), 273–288 (2009)

    Article  Google Scholar 

  3. Yang, B., Mei, T., Hua, X.-S., Yang, L., Yang, S.-Q., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: ACM Conf. on Image and Video Retrieval (CIVR 2007), pp. 73–80 (2007)

    Google Scholar 

  4. Yang, H., Chaisorn, L., Zhao, Y., Neo, S.-Y., Chua, T.-S.: VideoQA: question answering on news video. ACM Multimedia, 632–641 (2003)

    Google Scholar 

  5. Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: NYU: Description of the MENE named entity system as used in MUC-7. In: Proc. of the Seventh Message Understanding Conf., MUC-7 (1998)

    Google Scholar 

  6. McDonald, D., Chen, H.: Summary in context: Searching versus browsing. ACM Trans. Information Systems 24(1), 111–141 (2006)

    Article  Google Scholar 

  7. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Intl. Conf. on New Methods in Language Processing (1994)

    Google Scholar 

  8. A.I. Inc., “Lingpipe”, http://www.alias-i.com/lingpipe/

  9. Swan, R.C., Allan, J.: TimeMine: visualizing automatically constructed timelines. In: ACM SIGIR (2000)

    Google Scholar 

  10. Havre, S., Hetzler, B., Whitney, P., Nowell, L.: ThemeRiver: Visualizing thematic changes in large document collections. IEEE Trans. on Visualization and Computer Graphics 8(1), 9–20 (2002)

    Article  Google Scholar 

  11. Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Large-scale new video classification and hyperbolic visualization. In: IEEE Symposium on Visual Analytics Science and Technology (VAST 2007), pp. 107–114 (2007)

    Google Scholar 

  12. Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Exploring large-scale video news via interactive visualization. In: IEEE Symposium on Visual Analytics Science and Technology (VAST 2006), pp. 75–82 (2006)

    Google Scholar 

  13. van Wijk, J.: Bridging the gaps. IEEE Computer Graphics and Applications 26(6), 6–9 (2006)

    Article  Google Scholar 

  14. Walter, J.A., Ritter, H.: On interactive visualization of high-dimensional data using the hyperbolic plane. In: ACM SIGKDD (2002)

    Google Scholar 

  15. Lamping, J., Rao, R.: The hyperbolic browser: A focus+content technique for visualizing large hierarchies. Journal of Visual Languages and Computing 7, 33–55 (1996)

    Article  Google Scholar 

  16. Furnas, G.W.: Generalized fisheye views. In: ACM CHI, pp. 16–23 (1986)

    Google Scholar 

  17. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW (1998)

    Google Scholar 

  18. Wang, J., Chen, Z., Tao, L., Ma, W.-Y., Liu, W.: Ranking user’s relevance to a topic through link analysis on web logs. In: WIDM, pp. 49–54 (2002)

    Google Scholar 

  19. Lai, W., Hua, X.-S., Ma, W.-Y.: Towards content-based relevance ranking for video search. ACM Multimedia, 627–630 (2006)

    Google Scholar 

  20. Teevan, J., Dumais, S., Horvitz, E.: Personalized search via automated analysis of interests and activities. In: ACM SIGIR (2005)

    Google Scholar 

  21. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

    Article  MATH  Google Scholar 

  22. Mooney, R., Roy, L.: Content-based book recommending using learning for text categorization. In: ACM Conf. on Digital Libraries, pp. 195–204 (2000)

    Google Scholar 

  23. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Boston (1998)

    MATH  Google Scholar 

  24. Naphade, M., Smith, J.R., Tesic, J., Chang, S.-F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE Multimedia (2006)

    Google Scholar 

  25. Fan, J., Gao, Y., Luo, H.: Integrating concept ontology and multi-task learning to achieve more effective classifier training for multi-level image annotation. IEEE Trans. on Image Processing 17(3) (2008)

    Google Scholar 

  26. Fan, J., Gao, Y., Luo, H., Jain, R.: Mining multi-level image semantics via hierarchical classification. IEEE Trans. on Multimedia 10(1), 167–187 (2008)

    Article  Google Scholar 

  27. Fan, J., Luo, H., Gao, Y., Jain, R.: Incorporating concept ontology to boost hierarchical classifier training for automatic multi-level video annotation. IEEE Trans. on Multimedia 9(5), 939–957 (2007)

    Article  Google Scholar 

  28. Fan, J., Yau, D.K.Y., Elmagarmid, A.K., Aref, W.G.: Automatic image segmentation by integrating color edge detection and seeded region growing. IEEE Trans. on Image Processing 10(10), 1454–1466 (2001)

    Article  MATH  Google Scholar 

  29. Wactlar, H., Hauptmann, A., Gong, Y., Christel, M.: Lessons learned from the creation and deployment of a terabyte digital video library. IEEE Computer 32(2), 66–73 (1999)

    Google Scholar 

  30. Adams, W.H., Iyengar, G., Lin, C.-Y., Naphade, M.R., Neti, C., Nock, H.J., Smith, J.R.: Semantic indexing of multimedia content using visual, audio and text cues. EURASIP JASP 2, 170–185 (2003)

    Google Scholar 

  31. Naphade, M.R., Huang, T.S.: A probabilistic framework for semantic video indexing, filtering, and retrival. IEEE Trans. on Multimedia 3, 141–151 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, H., Fan, J. (2010). A Human-Centered Computing Framework to Enable Personalized News Video Recommendation. In: Schonfeld, D., Shan, C., Tao, D., Wang, L. (eds) Video Search and Mining. Studies in Computational Intelligence, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12900-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12900-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12899-8

  • Online ISBN: 978-3-642-12900-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics