Abstract
The Knaster–Tarski theorem asserts the existence of least and greatest fixpoints for any monotonic function on a complete lattice. More strongly, it asserts the existence of a complete lattice of such fixpoints. This fundamental theorem has a fairly straightforward proof. We use a mechanically checked proof of the Knaster–Tarski theorem to illustrate several features of the Prototype Verification System (PVS). We specialize the theorem to the power set lattice, and apply the latter to the verification of a general forward search algorithm and a generalization of Dijkstra’s shortest path algorithm. We use these examples to argue that the verification of even simple, widely used algorithms can depend on a fair amount of background theory, human insight, and sophisticated mechanical support.
This research was supported by NSF Grants CSR-EHCS(CPS)-0834810 and SGER-0823086 and by NASA Cooperative Agreement NNX08AY53A. Insightful feedback from the anonymous refereees and from Sam Owre were helpful in revising the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)
Agerholm, S.: A HOL basis for reasoning about functional programs. In: BRICS RS-94-44, Department of Computer Science, University of Aarhus, Denmark (December 1994), http://www.daimi.aau.dk/BRICS/RS/94/44/BRICS-RS-94-44/BRICS-RS-94-44.html
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Springer, Heidelberg (2004), http://coq.inria.fr/
Bartels, F., Dold, A., von Henke, F.W., Pfeifer, H., Rueß, H.: Formalizing Fixed-Point Theory in PVS. In: Ulmer Informatik-Berichte 96-10, Universität Ulm, Fakultät für Informatik (1996)
Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs (1986), http://www.cs.cornell.edu/Info/Projects/NuPRL/
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)
Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993), http://www.cl.cam.ac.uk/Research/HVG/HOL/
Huisman, M., Jacobs, B.: Java program verfication via a hoare logic with abrupt termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303. Springer, Heidelberg (2000)
Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM 12(10), 576–583 (1969)
Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice Hall International Series in Computer Science. Prentice Hall, Hemel Hempstead (1990)
Korte, B., Lovász, L.: Mathematical structures underlying greedy algorithms. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 205–209. Springer, Heidelberg (1981)
Knaster, B.: Un théorèm sur les fonctions d’ensembles. Annals. Soc. Pol. Math. 6, 133–134 (1928)
LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
Meyer, B.: Design by contract: Making object-oriented programs that work. In: TOOLS, vol. (25), p. 360. IEEE Computer Society, Los Alamitos (1997)
Muñoz, C.: PBS: Support for the B-method in PVS. Technical Report SRI-CSL-99-1, Computer Science Laboratory, SRI International, Menlo Park, CA (February 1999)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002), http://isabelle.in.tum.de/
Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering 21(2), 107–125 (1995), http://pvs.csl.sri.com
Owre, S., Shankar, N.: Theory interpretations in PVS. Technical Report SRI-CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park, CA (April 2001)
Paulson, L.C.: Set theory for verification II: Induction and recursion. Journal of Automated Reasoning 15(2), 167–215 (1995)
Pepper, P., Smith, D.R.: A high-level derivation of global search algorithms (with constraint propagation). Science of Computer Programming 28(2-3), 247–271 (1997)
Regensburger, F.: HOLCF: Higher order logic of computable functions. In: Schubert, E.T., Alves-Foss, J., Windley, P.J. (eds.) HUG 1995. LNCS, vol. 971, pp. 293–307. Springer, Heidelberg (1995)
Rajan, S., Shankar, N., Srivas, M.K.: An integration of model-checking with automated proof checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97. Springer, Heidelberg (1995)
Rudnicki, P., Trybulec, A.: Fixpoints in complete lattices. Formalized Mathematics 6(1), 109–115 (1997)
Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor. Comput. Sci. 121(1, 2), 411–440 (1993); Typed notes circulated in 1969 (1969)
Shankar, N.: Trust and automation in verification tools. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 4–17. Springer, Heidelberg (2008)
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific. J. of Math. 5, 285–309 (1955)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shankar, N. (2010). Fixpoints and Search in PVS. In: Müller, P. (eds) Advanced Lectures on Software Engineering. LASER LASER 2007 2008. Lecture Notes in Computer Science, vol 6029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13010-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-13010-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13009-0
Online ISBN: 978-3-642-13010-6
eBook Packages: Computer ScienceComputer Science (R0)