Skip to main content

Fixpoints and Search in PVS

  • Chapter
Advanced Lectures on Software Engineering (LASER 2007, LASER 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6029))

Abstract

The Knaster–Tarski theorem asserts the existence of least and greatest fixpoints for any monotonic function on a complete lattice. More strongly, it asserts the existence of a complete lattice of such fixpoints. This fundamental theorem has a fairly straightforward proof. We use a mechanically checked proof of the Knaster–Tarski theorem to illustrate several features of the Prototype Verification System (PVS). We specialize the theorem to the power set lattice, and apply the latter to the verification of a general forward search algorithm and a generalization of Dijkstra’s shortest path algorithm. We use these examples to argue that the verification of even simple, widely used algorithms can depend on a fair amount of background theory, human insight, and sophisticated mechanical support.

This research was supported by NSF Grants CSR-EHCS(CPS)-0834810 and SGER-0823086 and by NASA Cooperative Agreement NNX08AY53A. Insightful feedback from the anonymous refereees and from Sam Owre were helpful in revising the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Agerholm, S.: A HOL basis for reasoning about functional programs. In: BRICS RS-94-44, Department of Computer Science, University of Aarhus, Denmark (December 1994), http://www.daimi.aau.dk/BRICS/RS/94/44/BRICS-RS-94-44/BRICS-RS-94-44.html

  3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Springer, Heidelberg (2004), http://coq.inria.fr/

    Book  MATH  Google Scholar 

  4. Bartels, F., Dold, A., von Henke, F.W., Pfeifer, H., Rueß, H.: Formalizing Fixed-Point Theory in PVS. In: Ulmer Informatik-Berichte 96-10, Universität Ulm, Fakultät für Informatik (1996)

    Google Scholar 

  5. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs (1986), http://www.cs.cornell.edu/Info/Projects/NuPRL/

    Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993), http://www.cl.cam.ac.uk/Research/HVG/HOL/

    MATH  Google Scholar 

  8. Huisman, M., Jacobs, B.: Java program verfication via a hoare logic with abrupt termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM 12(10), 576–583 (1969)

    Article  MATH  Google Scholar 

  10. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice Hall International Series in Computer Science. Prentice Hall, Hemel Hempstead (1990)

    MATH  Google Scholar 

  11. Korte, B., Lovász, L.: Mathematical structures underlying greedy algorithms. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 205–209. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  12. Knaster, B.: Un théorèm sur les fonctions d’ensembles. Annals. Soc. Pol. Math. 6, 133–134 (1928)

    MATH  Google Scholar 

  13. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  14. Meyer, B.: Design by contract: Making object-oriented programs that work. In: TOOLS, vol. (25), p. 360. IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  15. Muñoz, C.: PBS: Support for the B-method in PVS. Technical Report SRI-CSL-99-1, Computer Science Laboratory, SRI International, Menlo Park, CA (February 1999)

    Google Scholar 

  16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002), http://isabelle.in.tum.de/

    Book  MATH  Google Scholar 

  17. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering 21(2), 107–125 (1995), http://pvs.csl.sri.com

    Article  Google Scholar 

  18. Owre, S., Shankar, N.: Theory interpretations in PVS. Technical Report SRI-CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park, CA (April 2001)

    Google Scholar 

  19. Paulson, L.C.: Set theory for verification II: Induction and recursion. Journal of Automated Reasoning 15(2), 167–215 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pepper, P., Smith, D.R.: A high-level derivation of global search algorithms (with constraint propagation). Science of Computer Programming 28(2-3), 247–271 (1997)

    Article  Google Scholar 

  21. Regensburger, F.: HOLCF: Higher order logic of computable functions. In: Schubert, E.T., Alves-Foss, J., Windley, P.J. (eds.) HUG 1995. LNCS, vol. 971, pp. 293–307. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  22. Rajan, S., Shankar, N., Srivas, M.K.: An integration of model-checking with automated proof checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Rudnicki, P., Trybulec, A.: Fixpoints in complete lattices. Formalized Mathematics 6(1), 109–115 (1997)

    Google Scholar 

  24. Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor. Comput. Sci. 121(1, 2), 411–440 (1993); Typed notes circulated in 1969 (1969)

    Google Scholar 

  25. Shankar, N.: Trust and automation in verification tools. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 4–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific. J. of Math. 5, 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shankar, N. (2010). Fixpoints and Search in PVS. In: Müller, P. (eds) Advanced Lectures on Software Engineering. LASER LASER 2007 2008. Lecture Notes in Computer Science, vol 6029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13010-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13010-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13009-0

  • Online ISBN: 978-3-642-13010-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics