Abstract
Finding appropriate parameter settings of parameterized algorithms or AI systems is an ubiquitous task in many practical applications. This task is usually tedious and time-consuming. To reduce human intervention, the study of methods for automated algorithm configuration has received increasing attention in recent years.
In this article, we study the mesh adaptive direct search (MADS) method for the configuration of parameterized algorithms. MADS is a direct search method for continuous, global optimization. For handling the stochasticity involved in evaluating the algorithm to be configured, we hybridized MADS with F-Race, a racing method that adaptively allocates an appropriate number of evaluations to each member of a population of candidate algorithm configurations. We experimentally study this hybrid of MADS and F-Race (MADS/F-Race) and compare it to other ways of defining the number of evaluations of each candidate configuration and to another method called I/F-Race. This comparison confirms the good performance and robustness of MADS/F-Race.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birattari, M.: Tuning Metaheuristics: A machine learning perspective. Springer, Berlin (2009)
Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proceedings of GECCO 2002, pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2002)
Audet, C., Dennis, J.: Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal on Optimization 17(1), 188–217 (2007)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the Analysis of Optimization Algorithms. Springer, Berlin (to appear)
Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM Journal on Optimization 17, 642 (2006)
Audet, C., Dennis, J.: Analysis of generalized pattern searches. SIAM Journal on Optimization 13, 889–903 (2000)
Stützle, T., Hoos, H.H.: \(\mathcal {MAX--MIN}\) Ant System. Future Generation Computer Systems 16(8), 889–914 (2000)
Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)
Stützle, T.: Iterated local search for the quadratic assignment problem. European Journal of Operational Research 174(3), 1519–1539 (2006)
Yuan, B., Gallagher, M.: Combining Meta-EAs and racing for difficult EA parameter tuning tasks. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, pp. 121–142. Springer, Berln (2007)
Smit, S., Eiben, A.: Comparing parameter tuning methods for evolutionary algorithms. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 399–406. IEEE Press, Piscataway (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yuan, Z., Stützle, T., Birattari, M. (2010). MADS/F-Race: Mesh Adaptive Direct Search Meets F-Race. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13022-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-13022-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13021-2
Online ISBN: 978-3-642-13022-9
eBook Packages: Computer ScienceComputer Science (R0)