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Abstract. Software and other technical products offered to a mass mar-
ket have a high demand on support and help desks. A tool for auto-
mated classification of incident reports, errors and other customer re-
quests which offers previous (successful) hints or solution procedures
could efficiently decrease support costs. We propose an approach to min-
ing incidents and other customer requests for support based on gener-
alising structural prototypes from structured data. Retrieval can then
be efficiently realised by matching incoming requests against prototypes.
We present an application to incident reports in an SAP business infor-
mation system. Several variants of structure generalisation algorithms
were realised and performance for an example test base was evaluated
with promising results.

1 Introduction

In many business domains, especially for software companies, dealing with user
requests for support and service has a growing demand on time and costs. Such
user requests might be concerned with lack of information or understanding of in-
stalling or using the software, with the need specialised routines for non-standard
problems, or with the report of errors and the need of trouble-shooting strategies.
While general recommendations for very frequent requests can be collected on a
FAQ site, typically many requests have to be dealt with on an individual basis.
If support is distributed between many employees, possibly also distributed over
different locations, it can be often the case that one support engineer has to deal
with a problem which another support engineer has already solved on a previ-
ous occasion. A common data base of user requests and how they were handled
(successfully) could reduce time and effort for service and support dramatically.
Such a data base could even be the backbone for automated support answers for
simple standard requests.

Given a data base with support requests and solution routines, the main prob-
lem is to provide a suitable similarity measure for retrieval of a suitable solution
routine for a new request. In the context of a case-based reasoning approach
(Aamodt & Plaza, 1994), similarity is determined between a new and an already
known case. Alternatively, cases can be generalised into prototypes (Rosch, 1983;
Zadeh, 1982; Wilson & Martinez, 1993). In this case, the most similar prototype



is retrieved and – depending on the application domain – either the associated
standard solution can be applied to the new case or a parametrised solution
routine can be instantiated in accordance to the new case. Using prototypes can
have an advantage over cases for large data bases because retrieval time can
be reduced when new cases have only to be matched against the prototypes
and not against all cases. Furthermore, prototype theory (Rosch, 1983) mimics
a successful human cognitive strategy (Wiese, Konerding, & Schmid, 2008). A
prototype represents the relevant aspects of a set of similar objects or situations
while irrelevant details are ignored.

The most prominent approach to similarity in data mining, case-based rea-
soning and classifier learning is to use feature based measures such as Euclidean
distances or other Minkowski metrics (Everitt, Landau, & Leese, 2001). If data
are not given as sets of features but in form of a structured representation –
e.g., as records or as terms – there are two strategies to obtain a similarity
rating available: An obvious approach is to transform the structures into fea-
ture sets (Yan, Zhu, Yu, & Han, 2006; Geibel, Schädler, & Wysotzki, 2003).
This has the advantage that many standard approaches to data-mining and
classification can be used. Another possibility is to use specialised approaches
to structural similarity such as edit distance (Bunke & Messmer, 1994) or de-
termining greatest common structures (Messmer & Bunke, 2000; Plaza, 1995;
Estruch, Ferri, Hernández-Orallo, & Ramı́rez-Quintana, 2009). Structure-based
approaches have the advantage that information contained in the relations be-
tween objects is not lost by transformation into features.

Our area of application is concerned with incident reports for the business
information software SAP Business ByDesign. In this software, creation and
visualisation of incident reports are based on an incident model. Incident reports
are created by an incident wizard. The current system state together with all
context data (current workspace, current object, UI) and a filled in report mask
are saved into an XML document and sent first to a key user and – if he or she
cannot solve the problem – sent further to a support engineer at SAP. The reports
can be viewed by the support engineer in the SAP support studio software
where he or she has different possibilities to analyse the report using a graphical
presentation of context data.

The work presented here, is a first exploration of the utility of structure
generalisation in this domain. Currently, we work on manually created inci-
dent clusters and focus on generalisation and retrieval. In the following, we first
present how incidents are represented in form of trees. Afterwards, we introduce
our approach to tree generalisation and retrieval. Within the general framework
of structure matching and learning we propose different algorithmic realisations.
An evaluation of these realisations and a comparison with the inductive logic
programming algorithm Foil for a set of sample incidents is presented. We con-
clude with possible improvements, extensions, and suggestions for application.



2 Incident Trees

Incidents occurring in the context of the SAP Business ByDesign System are
represented in a unique form, given as an incident model which is specified as an
XML-tree. It contains, for example, information about the software version, the
workcenter (the role of the user) and the business object for which the incident
occurred. The model is an abstraction of the system’s class hierarchy. Incident
objects are referred to by a name, their corresponding class is given as a type. The
details of the incident model are reported in Bader (2009). The general structure
of an incident follows the following form: Each element has a prescribed type
which characterises the context information and the content of an incident. For
a given incident, an element is instantiated with a name-string. Depending on
its type, an element can have zero to a typically small number n of children. An
extract of the incident model is given in Figure 1.

An example use case is, that an employee wants to order some office equip-
ment. He or she works from the “home” workcenter (WC(home)) and entered
the shopping basket user interface (UI(ShopBaskQAF)). When an incident is
reported in this situation, the business objet “purchase request” (BO(PurReq))
becomes part of the incident context.

The incident model – also called model tree – represents the general structure
which is underlying each possible incident report and thereby restricts the form
of incident trees.

Definition 1. A model tree M is a tree of fixed size with typed elements e : τ .
The type of the element determines the number and types of its child nodes.

Note, that in Figure 1 we write an element e as τ(name) where name is a variable
which can be instantiated by a constant name-string for a given incident.

Definition 2. An incident tree I is an instantiation of the model tree M :
Each element e ∈ M is either mapped to ǫ (empty element) or a constant name
string of type τ . At least one element in I must be unequal ǫ.

Definition 3. To refer to an element e in a tree T , we write e if addressing
the element only and we write e(T1, . . . , Tn) if we address the element and its
children. A position in a tree T is defined as

UI(name)

BO(name) JavaRTE(name)

WC(name)Java(name)ABAP(name)

Incident(name)

ARTE(name)

Fig. 1. Extract of the Incident Model



– λ is the root position of T ,
– if T = e(T1, . . . Tn) and u is a position in Ti, then i.u. is a position in T .

T.p = e refers to a specific element in T . T.p = e(T1, . . . , Tn) refers to a specific
element and its children.

For better readability we omit types in the definition. In the algorithms
presented in the following section, it is guaranteed that mapped elements are
of the same type since mapping is guided by a fixed model tree underlying all
instance trees.

3 Tree Generalisation and Retrieval

For learning of incident prototypes, sets of incidents – called cluster – are gen-
eralised with respect to their common structure. In consequence, each cluster is
represented by a prototype and new incoming incidents are compared with all
prototypes to retrieve the most similar one. In the following we propose three
approaches to generalisation and retrieval: Anti-unification of trees as base-line
approach and two variants for generating structure-dominance trees. Since we
are not concerned with arbitrary trees but with trees based on a unique struc-
ture given as model tree, there is no need to rely on general approaches to tree
matching (Wang, Zhang, Jeong, & Shasha, 1994).

3.1 Anti-Unification of Trees

Syntactic first-order anti-unification is an approach to generate least generali-
sations over terms (Plotkin, 1969; Burghardt & Heinz, 1996). An anti-instance
of a set of terms is calculated by traversing them simultaneously and keeping
the common structure. If terms start with different symbols, these terms are
represented as mappings to variables in the anti-instance. The mappings can be
used to recreate the original terms from the anti-instance by transforming them
into substitutions.

Since trees and terms are corresponding data structures, this approach can
be transferred to incident trees. That is, a cluster prototype is defined as anti-
instance of a set of incident trees. Instead of calculating mappings, we introduce
an ǫ-element in the anti-instance at the position of mismatched terms.

Algorithm 1. Let M be a model tree, I = {I1, . . . , IN} a set of incident trees,
and P a prototype tree. Syntactic anti-unification of sets of incident trees

au(p, P, M, I) is defined as:

– Initially the prototype is empty: P.λ = ǫ.
– We traverse the model tree top-down, starting with M.λ.
– For the current position p in model tree M , M.p = e : τ

• If for all incident trees in I holds I1.p = . . . = IN .p
then P.p := e and
if M.p = e(T1, . . . , Tn) then for all incidents Ii do au(p.i, P,M, {T1i, . . . , TNi}).



• Else P.p := ǫ : τ (an empty element).

An anti-instance of a set of trees corresponds to the intersection of all trees
with respect to a model tree (see Figure 2 for an illustration).

For retrieval, the most similar prototype Pi for an incoming incident Inew

must be determined. This can be realised by anti-unifying Inew with each pro-
totype and partially ordering the anti-instances APi,Inew

with respect to their
subsumption relation (Plaza, 1995).

Definition 4. An incident tree T is said to subsume another incident tree T ′,
that is, T is a generalisation of T ′ (T > T ′) if sub(T, T ′, λ) = true with

– sub(ǫ, T ′, p) = true
– sub(T, T ′, p) = false if T.p 6= ǫ and T.p 6= T ′.p
– sub(T (t1, . . . , tn), T ′(t′

1
, . . . , t′m), p) = true if T.p = T ′.p and n = m and for

all ti sub(ti, t
′

i, p.i).

3.2 Structure Dominance Tree Generalisation

Syntactic anti-unification is not robust with respect to noise. Furthermore, using
an identity criterium for element matching is very strict. If, for example, n − 1
incidents have an identical element at position p and only one incident has
a different or empty entry for this element, the prototype at this position is
empty. Therefore, we introduce a new approach to prototype learning – structure
dominance tree generalisation (SDTG). The basic idea is to collect the number
of occurrences of different elements at a position.

Algorithm 2. Let M be a model tree, I = {I1, . . . , IN} a set of incident trees,
and P a prototype tree. Structure dominance tree generalisation sdtg(p,
P, M, I) is defined as:

– Initially the prototype is empty: P.λ = ǫ.
– We traverse the model tree top-down, starting with M.λ.
– Until I is empty, for the current position p in model tree M , M.p = e : τ

• If for all incident tree in I holds I1.p = . . . = IN .p
then P.p := e : τ and
if M.p = e(T1, . . . , Tn) then for all incidents Ii do sdtg(p.i, P,M, {T1i, . . . , TNi}).

• Else for each of the c = |{I1.p, . . . , IN .p}| different elements create a new
node P.p1, . . . , P.pc with P.pi := [ei/fi] : τ as element names ei and their
relative frequencies fi. Proceed for all new elements with
sdtg(p.i, P,M, {T1i, . . . , TNi}).

While syntactic anti-unification returns the intersection of a set of incident
trees as prototype, SDTG returns the union of all incident trees (see Figure 2
for an illustration).

A combination of both approaches can be realised as follows:



ABAP(ABAP) J2EE(Java)

Incident(root)

WC(*)

AU−Prototype

Incident 1 Incident 2

ABAP(ABAP) J2EE(Java) ARTE(ABAP Runtime Error)

Incident(root)

JRTE (JavaRuntimeError)

ABAP(ABAP) J2EE(Java)

Incident(root)

JRTE (JavaRuntimeError)

WC(Home)

SDTG−Prototype

J2EE(Java 2/2)ABAP(ABAP 2/2)

Incident(root 2/2)

ARTE(ABAP Runtime Error 1/2)

JRTE (JavaRuntimeError 1/1)

SDTGAU−Prototype

J2EE(Java 2/2)ABAP(ABAP 2/2)

Incident(root 2/2)

ARTE(ABAP Runtime Error 1/2)

JRTE (JavaRuntimeError 1/1)

WC(PurchaseRO 1/2)  WC(Home 1/2)

WC(PurchaseRO)

WC(PurchaseRO 1/2; Home 1/2)

UI(PROIF)

UI(PROIF 1/2)

UI(ShopBQAF)

UI(ShopBaskQAF 1/2)

UI(PROIF 1/2; ShopBaskQAF 1/2)

BO(PurReq) BO(PurReq)

BO(PurReq 1/1)

BO(PurReq 1/1)

BO(PurReq 2/2) JRTE (JavaRuntimeError 2/2)

Fig. 2. Illustration of Prototype Generation

Algorithm 3. Let M be a model tree, I = {I1, . . . , IN} a set of incident trees,
and P a prototype tree. Structure dominance tree generalisation with

anti-unification sdtgau(p, P, M, I) is defined as:

– Initially the prototype is empty: P.λ = ǫ.
– We traverse the model tree top-down, starting with M.λ.
– Until I is empty, for the current position p in model tree M , M.p = e : τ

• If for all incident tree in I holds I1.p = . . . = IN .p
then P.p := e and
if M.p = e(T1, . . . , Tn) then for all incidents Ii do sdtgau(p.i, P,M, {T1i, . . . , TNi}).

• Else P.p := [ei/fi] : τ becomes a tuple of all occurring elements at po-
sition p together with their relative frequencies and we proceed for all
children with sdtgau(p.i, P,M, {T1i, . . . , TNi}).

An illustrative example is given in Figure 2.
Retrieval for SDTG and SDTGAU can be realised using some similarity

measure over trees. We explored several measures and it showed, that Manhattan
distance is the most robust and reliable measure:

d(I, P ) =
n∑

i=1

|fPi − fIi| with fPi = 1.



4 Empirical Results

For empirical evaluation of our structural approaches to incident mining, we
obtained 57 real example incidents from SAP support which were manually
grouped in 11 clusters based on their root cause analysis. One cluster contained
three incidents, four clusters four incidents each, one cluster five incidents, four
clusters six incidents each and one cluster 9 incidents. The rather low number
of instances per cluster is realistic for this application domain. That is, for this
domain only approaches to prototype or classifier learning which produce reliable
results for small numbers of cases are applicable. The size of incidents varied
between 27 and 2646 nodes with an average size of 812 nodes.

In addition to the approaches described above, we used the inductive logic
programming algorithm Foil (Quinlan & Cameron-Jones, 1995) which is a well
established approach to learning from relational data. Since Foil needs positive
and negative examples for its rule induction, for each cluster we used one incident
from all other clusters as negative example. Furthermore, for using Foil the
incident model was represented as set of Prolog clauses given as background
knowledge.

All evaluations were run on an Intel Core 2 Duo with 2.4 GHz, 2 GB DDR3
working memory, 250 GB hard disk space and operation system Mac OS X
10.5.6. Algorithms were realised with Java Sun JDK 1.5.0 16-b06-284. Foil in
version 6 was compiled with GCC 4.01. Since running times for all trials had a
very low standard deviation for prototype generation as well as for retrieval, we
only give average run times and omit giving standard deviations.

For a first evaluation, for each of the 11 clusters the prototypes were gener-
ated over all incidents (see Table 1). Afterwards, each instance was used in the
retrieval phase. Times for generation of prototypes and for retrieval were aver-
aged over all runs. In general, times for all approaches were reasonably fast. As
was to be expected, anti-unification returned perfect results with the smallest
prototypes (168 nodes in average). Foil produced a rather large number of erro-
neous and ambiguous classifications. This result is mostly due to our unsophis-
ticated approach for presentation of negative examples. Since negative examples
are used to specialise rules, typically some care in providing suitable negatives is
needed. Both SDTG and SDTGAU returned no perfect, but acceptable results.

Table 1. Base Performance: All instances included in prototype generation, all in-
stances used for retrieval

Method Hits Errors Av. Size Generation (sec.) Retrieval (sec.)

FOIL 27 18, 121 0,035 0,403
AU 57 0 168 0,177 0,038
SDTG 53 4 447 0,182 0,047
SDTGAU 55 2 273 0,162 0,038
1 first value: classification error, second value: ambiguous result



Table 2. Leave-one-out Performance: Three trials with one instance excluded from
prototype generation

Method Hits Errors Av. Size Generation (sec.) Retrieval (sec.)

FOIL 11 8, 141 0,109 0,409
AU 29 4 173 0,485 0,044
SDTG 22 11 387 0,456 0,049
SDTGAU 31 2 264 0,419 0,047
1 first value: classification error, second value: ambiguous result

A more precise evaluation was realised using a leave-one-out approach (see
Table 2. Due to the small number of examples, we used three runs for prototype
generation disregarding the first, the second and the third incident in each cluster
respectively. Again, times are given as averages over all runs. Again, all times
for prototype construction and for retrieval are acceptable. Now anti-unification
returns the wrong prototype in 4 out of 33 cases which is better than SDTG but
slightly worse than SDTGAU.

Finally, we evaluated how our approaches can deal with noisy data. Out
of the original 11 clusters, we created 110 new clusters, each containing n − 1
incidents of an original cluster and one incident of one of the other clusters (see
Table 3). As was to be expected, anti-unification breaks down for noisy data.
SDTGAU outperformed all other approaches returning only 1 misclassification.

Table 3. Performance on noisy clusters: 110 clusters each containing one miss-placed
instance

Method Hits Errors Av. Size Generation (sec.) Retrieval (sec.)

FOIL 0 0, 571 0,020 7,378
AU 4 53 66 0,202 0,051
SDTG 52 5 619 0,227 0,102
SDTGAU 56 1 410 0,188 0,069
1 first value: classification error, second value: ambiguous result

5 Conclusions and Further Work

For the given application domain – mining of incident reports characterised by
an incident model – we could show first promising results for a set of simple
structure-generalisation algorithms. Of course, the number of clusters and in-
cidents used in the evaluation is rather small and a further evaluation using a
larger data base should be realised. Using a small set of incidents had the ad-
vantage that we had full control over clustering which was done manually by a
domain expert. For a large scale performance evaluation, we need to extend our
approach to automated clustering as a first step.



For clustering we again propose to take into account the incident structures.
That is, we plan to realise a clustering based on structural similarity between
instances (Taskar, Segal, & Koller, 2001).

The proposed algorithms do not take into account the possibility that a tree
element might have more than one child of the same type. A planned extension
of the algorithms therefore is, to include tree matching to obtain best matches
for arbitrary sets of type-identical nodes.

After extension of our approach to automated clustering, we plan to realise a
semi-automated assistance tool for support engineers with SDTGAU as general-
isation algorithm: For an incoming incident, a ranked list of retrieved prototypes
can be offered. If the engineer accepts one of these prototypes, the new incident
is saved in the selected cluster. The support engineer furthermore can edit the
prescribed support routines associated with the cluster prototypes. In repeated
intervals – after substantial growth of the incident data base – automated clus-
tering and prototype generalisation can be re-done to stratify the data-base. We
assume that such a tool might relieve support engineers of repetitive work, con-
siderably heighten efficiency of support and ultimately provide fast and reliable
support for the users.
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