Abstract
Mineral determination is a basis of the petrography. Automatic mineral classification based on digital image analysis is getting very popular. To improve classification accuracy we consider similarity features, complex one stage classifiers and two-stage classifiers based on simple pair-wise classification algorithms. Results show that employment of two-stage classifiers with proper parameters orK class single layer perceptron are good choices for mineral classification. Similarity features with properly selected parameters allow obtaining non-linear decision boundaries and lead to sizeable decrease in classification error rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Segnini, S., Dejmek, P., Öste, R.: A low cost video technique for colour measurement of potato chips. Lebensmittel-Wissenschaft und-Technologie 32(4), 216–222 (1999)
Yam, K.L., Papadakis, S.E.: A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering 61(1), 137–142 (2004)
Gökay, M.K., Gundogdu, I.B.: Color identification of some Turkish marbles. Construction and Building Materials 22(7), 1342–1349 (2008)
Fueten, F.: A computer-controlled rotating polarizer stage for the petrographic microscope. Computers & Geosciences 23(2), 203–208 (1997)
Marschallinger, R.: Automatic mineral classification in the macroscopic scale. Computers & Geosciences 23, 119–126 (1997)
Thompson, S., Fueten, F., Bockus, D.: Mineral identification using artificial neural networks and the rotating polarizer stage. Computers & Geosciences 27(9), 1081–1089 (2001)
Fueten, F., Mason, J.: An artificial neural net assisted approach to editing edges in patrographic images collected with rotating polarizer stage. Computers & Geosciences 33(9), 1176–1188 (2007)
Bombardier, V., Schmitt, E., Charpentier, P.: A fuzzy sensor for color matching vision system. Measurement 42(2), 189–201 (2009)
Komenda, J.: Automatic recognition of complex microstructures using the Image Classifier. Materials Characterization 46(2-3), 87–92 (2001)
Akesson, U., Stigh, J., Lindqvist, J.E., Göransson, M.: The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Engineering Geology 68(3-4), 275–288 (2003)
Forero, M.G., Sroubek, F., Cristobal, G.: Identification of tuberculosis bacteria based on shape and color. Real-Time Imaging 10(4), 251–262 (2004)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press, Oxford (1995)
Raudys, S.: Statistical and Neural Classifiers: An integrated approach to design. Springer, NY (2001)
Haykin, S.: Neural Networks: A comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)
Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, NY (1990)
Boser, B., Guyon, I., Vapnik, V.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the Fith Annual Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)
Raudys, S.: Evolution and generalization of a single neurone. I. SLP as seven statistical classifiers, Neural Networks 11, 283–296 (1998)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Available at, http://www.csie.ntu.edu.tw/~cjlin/libsvm
Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classifcation (2009), http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Wu, K.-P., Wang, S.-D.: A weight initialization strategy for weighted support vector machines. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 288–296. Springer, Heidelberg (2005)
Skurichina, M., Raudys, S., Duin, R.P.W.: K-NN directed noise injection in multilayer perceptron training. IEEE Trans. on Neural Networks 11(2), 504–511 (2000)
Park, S.-H., Fürnkranz, J.: Efficient Pairwise Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 658–665. Springer, Heidelberg (2007)
Fürnkranz, J.: Round Robin Classification. Journal of Machine Learning Research 2, 721–747 (2002)
Krzysko, M., Wolynski, W.: New variants of pairwise classification. European Journal of Operational Research (EOR) 199(2), 512–519 (2009)
Sulzmann, J.-N., Fürnkranz, J., Hüllermeier, E.: On Pairwise Naive Bayes Classifiers. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 371–381. Springer, Heidelberg (2007)
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting otput codes. J. Artif. Int. Res. 2, 263–286 (1995)
Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAG’s for multi-class classification. In: Advances in Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press, Cambridge (2000)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of Statistics 26(1), 451–471 (1998)
Friedman, J.H.: Regularized discriminant analysis. Journal of the American Statistical Association 84(405), 165–175 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kybartas, R., Baykan, N.A., Yilmaz, N., Raudys, S. (2010). Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13025-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-13025-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13024-3
Online ISBN: 978-3-642-13025-0
eBook Packages: Computer ScienceComputer Science (R0)