Abstract
This paper reports the results of a research effort that explores time/space tradeoffs inherent to genetic algorithms (GA). The study analyzes redundancy in the GA search space and lays out a schema for efficient utilization of record keeping in the form of a cache to minimize redundancy. The application used for evaluation of the record keeping procedure is feature selection for computer workload characterization. The experimental results demonstrate the utility of record keeping in the GA domain, and show a significant reduction in execution time with virtually the same solution quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Luo, Y., Joshi, A., Phansalkar, A., John, L.K., Ghosh, J.: Analyzing and Improving Clustering Based Sampling for Microprocessors. Journal of High Performance Computing and Networking 5(4), 352–366 (2008)
Brock, M.: Feature Selection for Slice Based Workload Characterization and Power Estimation, Texas State University, Master Thesis (in progress)
Vose, M.D.: The simple genetic algorithm: Foundations and theory. MIT Press, Cambridge (1999)
Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters 10, 335–347 (1989)
Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition (33), 25–41 (2000)
Kudo, M., Somol, P., Pudil, P., Shimbo, M., Sklansky, J.: Comparison of Classifier Specific Feature Selection Algorithms. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 677–686. Springer, Heidelberg (2000)
Cover, T.M., Van Campenhout, J.M.: On the possible orderings in the measure-ment selection problem. IEEE Transactions on Systems, Man and Cybernetics 7(9), 657–661 (1997)
Guyon, I.J., Weston, S., Barnhill, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1) (2002)
Gadat, S., Younes, L.: A stochastic algorithm for feature selection in pattern recognition. Journal of Machine Learning Research 8, 509–547 (2007)
Wang, Y.L., Li, J., Ni, S., Huang, T.: Feature selection using tabu search with long-term memories and probabilistic networks. Pattern Recognition Letters 30, 661–670 (2009)
Liu, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, Boston (1998)
Bello, R.A., Puris, A., Nowe, Y., Martinez, G.M.: Two Step Ant Colony System to Solve the Feature Selection Problem. In: MartÃnez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 588–596. Springer, Heidelberg (2006)
Coetzee, F.M., Glover, E., Lawrence, S., Lee, C.: Feature selection in web applica-tions using ROC insertions and power set pruning. In: Proceedings 2001 Symposium on Applications and the Internet, USA, pp. 5–14 (2001)
Narendra, P.M., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers 26, 917–922 (1977)
Nakariyakul, S.: On the suboptimal solutions using the adaptive branch and bound algorithm for feature selection. In: Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, pp. 384–389 (2008)
Yusta, S.C.: Different meta-heuristic strategies to solve the feature selection problem. Pattern Recognition Letters 30, 525–534 (2009)
Wang, X.J., Yang, X., Teng, W., Xia, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28, 459–471 (2007)
Stone, H.S.: High-performance computer architecture. Prentice-Hall, Englewood Cliffs (1993)
Hertel, P., Pitassi, T.: An exponential time/space speedup for resolution. Electronic Colloquium on Computational Complexity 46, 1–25 (2007)
Allen, D., Darwiche, A.: Optimal time-space tradeoff in probabilistic inference. In: Proceedings of the 21st international joint conference on artificial intelligence, pp. 969–975 (2003)
Aggarwal, A.: Software caching vs. pre-fetching. In: ACM Proceedings of the International Symposium on Memory Management, Germany, pp. 1–6 (2002)
Karhi, D., Tamir, D.E.: Caching in the TSP Search Space. In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS, vol. 5579, pp. 221–230. Springer, Heidelberg (2009)
Santos, E.E., Santos Jr., E.: Cache Diversity in genetic algorithm Design. In: FLAIRS Conference, pp. 107–111 (2000)
Lowell, D., El Lababedi, B., Novoa, C., Tamir, D.E.: The Locality of Refer-ence of Genetic algorithms and Probabilistic Reasoning. In: The International Conference on Artificial Intelligence and Pattern Recognition, AIPR 2009, USA (2009)
Ball, J.H., Hall, D.J.: A clustering technique for summarizing multivariate data. Behavioral Science 12(2), 153–155 (1966)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tamir, D.E., Novoa, C., Lowell, D. (2010). Time Space Tradeoffs in GA Based Feature Selection for Workload Characterization. In: GarcÃa-Pedrajas, N., Herrera, F., Fyfe, C., BenÃtez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13025-0_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-13025-0_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13024-3
Online ISBN: 978-3-642-13025-0
eBook Packages: Computer ScienceComputer Science (R0)