Abstract
We introduce the framework of branched polyhedral systems that can be used in order to construct extended formulations for polyhedra by combining extended formulations for other polyhedra. The framework, for instance, simultaneously generalizes extended formulations like the well-known ones (see Balas [1]) for the convex hulls of unions of polyhedra (disjunctive programming) and like those obtained from dynamic programming algorithms for combinatorial optimization problems (due to Martin, Rardin, and Campbell [11]). Using the framework, we construct extended formulations for full orbitopes (the convex hulls of all 0/1-matrices with lexicographically sorted columns), we show for two special matching problems, how branched polyhedral systems can be exploited in order to construct formulations for certain nested combinatorial problems, and we indicate how one can build extended formulations for stable set polytopes using the framework of branched polyhedral systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6(3), 466–486 (1985)
Conforti, M., Cornuéjols, G., Zambelli, G.: Extended Formulations in Combinatorial Optimization. Technical Report (2009)
Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer linear programming. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming 1958-2008. Springer, Heidelberg (2010)
Conforti, M., Di Summa, M., Eisenbrand, F., Wolsey, L.: Network formulations of mixed-integer programs. Math. Oper. Res. 34, 194–209 (2009)
Edmonds, J.: Maximum matching and a polyhedron with 0,1 vertices. Journal of Research of the National Bureau of Standards 69B, 125–130 (1965)
Faenza, Y., Kaibel, V.: Extended formulations for packing and partitioning orbitopes. Math. Oper. Res. 34(3), 686–697 (2009)
Faenza, Y., Oriolo, G., Stauffer, G.: The hidden matching structure of the composition of strips: a polyhedral perspective. In: 14th Aussois Workshop on Combinatorial Optimization, Aussois (January 2010)
Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for the sizes of extended formulations. In: Eisenbrand, F., Shepherd, B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 135–148. Springer, Heidelberg (2010)
Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114(1, Ser. A), 1–36 (2008)
Margot, F.: Composition de Polytopes Combinatoires: Une Approche par Projection. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (1994)
Martin, R.K., Rardin, R.L., Campbell, B.A.: Polyhedral characterization of discrete dynamic programming. Oper. Res. 38(1), 127–138 (1990)
Schaffers, M.: On Links Between Graphs with Bounded Decomposability, Existence of Efficient Algorithms, and Existence of Polyhedral Characterizations. Ph.D. thesis, Université Catholique de Louvain (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaibel, V., Loos, A. (2010). Branched Polyhedral Systems. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-13036-6_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13035-9
Online ISBN: 978-3-642-13036-6
eBook Packages: Computer ScienceComputer Science (R0)