Skip to main content

Branched Polyhedral Systems

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6080))

Abstract

We introduce the framework of branched polyhedral systems that can be used in order to construct extended formulations for polyhedra by combining extended formulations for other polyhedra. The framework, for instance, simultaneously generalizes extended formulations like the well-known ones (see Balas [1]) for the convex hulls of unions of polyhedra (disjunctive programming) and like those obtained from dynamic programming algorithms for combinatorial optimization problems (due to Martin, Rardin, and Campbell [11]). Using the framework, we construct extended formulations for full orbitopes (the convex hulls of all 0/1-matrices with lexicographically sorted columns), we show for two special matching problems, how branched polyhedral systems can be exploited in order to construct formulations for certain nested combinatorial problems, and we indicate how one can build extended formulations for stable set polytopes using the framework of branched polyhedral systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6(3), 466–486 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended Formulations in Combinatorial Optimization. Technical Report (2009)

    Google Scholar 

  3. Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer linear programming. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming 1958-2008. Springer, Heidelberg (2010)

    Google Scholar 

  4. Conforti, M., Di Summa, M., Eisenbrand, F., Wolsey, L.: Network formulations of mixed-integer programs. Math. Oper. Res. 34, 194–209 (2009)

    Article  MathSciNet  Google Scholar 

  5. Edmonds, J.: Maximum matching and a polyhedron with 0,1 vertices. Journal of Research of the National Bureau of Standards 69B, 125–130 (1965)

    MathSciNet  Google Scholar 

  6. Faenza, Y., Kaibel, V.: Extended formulations for packing and partitioning orbitopes. Math. Oper. Res. 34(3), 686–697 (2009)

    Article  MathSciNet  Google Scholar 

  7. Faenza, Y., Oriolo, G., Stauffer, G.: The hidden matching structure of the composition of strips: a polyhedral perspective. In: 14th Aussois Workshop on Combinatorial Optimization, Aussois (January 2010)

    Google Scholar 

  8. Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for the sizes of extended formulations. In: Eisenbrand, F., Shepherd, B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 135–148. Springer, Heidelberg (2010)

    Google Scholar 

  9. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114(1, Ser. A), 1–36 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Margot, F.: Composition de Polytopes Combinatoires: Une Approche par Projection. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (1994)

    Google Scholar 

  11. Martin, R.K., Rardin, R.L., Campbell, B.A.: Polyhedral characterization of discrete dynamic programming. Oper. Res. 38(1), 127–138 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schaffers, M.: On Links Between Graphs with Bounded Decomposability, Existence of Efficient Algorithms, and Existence of Polyhedral Characterizations. Ph.D. thesis, Université Catholique de Louvain (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaibel, V., Loos, A. (2010). Branched Polyhedral Systems. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13036-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13035-9

  • Online ISBN: 978-3-642-13036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics